A. Kumar et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4353–4357
3. Kumar, A.; Tyagi, M.; Shrivasthava, V. K. Indian J. Chem. 2003, 42B, 2142.
4357
Table 3
4. EI-Brollosy, N. R.; Abdel-Megeed, M. F.; Genady, A. R. Alexandria J. Pharm. Sci.
2003, 17, 17.
5. Shab, B. R.; Bhatt, J. J.; Patel, H. H.; Undavia, N. K.; Trivedi, P. B.; Desai, N. C.
Indian J. Chem. 1995, 34B, 201.
6. Khili, M. A.; Soliman, R.; Furghuli, A. M.; Bekhit, A. A. Arch. Pharm. 1994, 327, 27.
7. Shivaram, H. B.; Padmaja, M. T.; Shivnanda, M. K.; Akbarali, P. M. Indian J. Chem.
1998, 37B, 715.
8. Hess, H. J.; Cronin, T. H.; Scriabine, A. J. Med. Chem. 1968, 11, 130.
9. Abouzeid, L. A.; Abdel-Aziz, A. A.-M.; Nagi, M. N.; Abdul-Hamide, S. G.; Al-
Obaid, A.; El-Subbagh, H. I. M. Bioorg. Med. Chem. 2010, 18, 2849.
10. Abouzeid, L. A.; Abdel-Aziz, A. A.-M.; Nagi, M. N.; Abdul-Hamide, S. G.; Al-
Obaid, A.; El-Subbagh, H. I. M. Eur J. Med. Chem. 2009, 44, 2379.
11. Ple, P. A.; Green, T. P.; Hennequin, L. F.; Curwen, J.; Fennell, M.; Allen, J.;
Lambertvan der Brempt, C.; Costello, G. J. Med. Chem. 2004, 47, 871.
12. (a) Doyle, L. A.; Ross, D. D. Oncogene 2003, 22, 7340; (b) Henderson, E. A.;
Bavetsias, V.; Theti, D. S.; Wilson, S. C.; Clauss, R.; Jackman, A. L. Bioorg. Med.
Chem. 2006, 14, 5020.
Calculated physico-chemical parameters of synthesized quinazoline-4(3H)-ones
using HyperChem software
Compounds Heat of formation
(kcal/mol)
Hydration energy of
molecule (kcal/mol)
Dipole
(Debyes)
9a
9b
9c
9d
9e
9f
9g
9h
9i
ꢀ117666.43
ꢀ117664.86
ꢀ120986.71
ꢀ121164.63
ꢀ131799.40
ꢀ120992.19
ꢀ114214.4
ꢀ13.65
ꢀ11.54
ꢀ23.67
ꢀ31.15
ꢀ31.11
ꢀ18.42
ꢀ17.39
ꢀ12.48
ꢀ18.12
ꢀ9.55
3.99
4.32
4.10
4.88
5.72
5.00
5.05
7.40
2.78
5.14
ꢀ121071.49
ꢀ124425.14
ꢀ106594.35
9j
13. (a) Chien, T. C.; Chen, C. S.; Yu, F. H.; Chern, J. W. Chem. Pharm. Bull. 2004, 52,
1422; (b) Herget, T.; Freitag, M.; Morbitzer, M.; Kupfer, R.; Stamminger, T.;
Marschall, M. Antimicrob. Agents Chemother. 2004, 48, 4154.
14. (a) Waisser, K.; Gregor, J.; Dostal, H.; Kunes, J.; Kubicova, L.; Klimesova, V.;
Kaustova, J. Farmaco 2001, 56, 803; (b) Kunes, J.; Bazant, J.; Pour, M.; Waisser,
K.; Slosarek, M.; Janota, J. Farmaco 2000, 55, 725.
15. Suthakaran, R.; Kavimani, S.; Venkapayya, P.; Suganthi, K. Int. J. Pharmco. Bio.
Sci. 2008, 2, 29.
16. Hossain, S. U.; Bhattacharya, S. Bioorg. Med. Chem. Lett. 2007, 17, 1149.
17. Jeong, T. S.; Kim, J. R.; Kim, K. S.; Cho, K. H.; Bae, K. H.; Lee, W. S. Bioorg. Med.
Chem. 2004, 12, 4017.
18. Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Lebensmittel Wissenschaft und
Technologie. 1995, 28, 25.
19. Ravikanth, S.; Reddy, G. V.; Kishore, K. H.; Shanthanrao, P.; Narsaiah, B.;
Murthy, S. N. Eur. J. Med. Chem. 2006, 41, 1011.
20. Kumar, N.; Singh, G.; Yadav, A. K. Heteroat. Chem. 2001, 12, 52.
21. Kuyper, L. F.; Garvey, J. M.; Baccanari, D. P.; Champness, J. N.; Stanmmers, D. K.;
Beddell, C. R. Bioorg. Med. Chem. 1996, 4, 593.
22. Fetter, J.; Czuppon, T.; Hornyak, G.; Feller, A. Tetrahedron 1991, 47, 9393.
23. El-Sharief, A. M. Sh.; Mohamed, F. F.; Taha, N. M.; Ahmed, E. M. Phosphorus,
Sulfur and Silicon 2005, 180, 573.
24. The antibacterial activity was investigated by the disc diffusion method using
nutrient agar medium.29–31 The agar medium was autoclaved for 30 min at a
pressure of 1.5 kg cmꢀ3 and cooled to 37 °C. It was inoculated with 0.5 mL fresh
subculture of all the corresponding microorganisms aseptically, and mixed
well by gentle shaking to get the homogenous suspension. 20 mL of this
medium was poured under aseptic conditions in each sterilized Petri dish and
allowed to set. Sterile 6 mm filter paper discs, impregnated with the solution of
test compound (200 mg mLꢀ1 in DMSO) were then placed at 37 °C for 24 h for
bacterial growth. For comparison, the solvent control (DMSO) and standard
drug ampicillin were also screened under similar conditions. The diameter of
inhibition zone (in mm) was measured at successive intervals during the
incubation period. Duplicate sets were used for each treatment.
25. Scherrer, R.; Gerhardt, P. J. Bacteriol. 1971, 107, 718.
The physico-chemical parameters, including heat of formation
DHf), dipole, and hydration of molecule were calculated using
(
HyperChem molecular modeling software. Some physico-chemical
parameters of the quinazoline-4(3H)-ones under investigation
were calculated using the HyperChem molecular modeling soft-
ware (Table 3). A QSAR28 model could be derived to calculate the
redox potential (i.e., a direct measure of the antioxidant property)
of phenolic compounds using calculated parameters such as the
heat of formation (
ing parent phenols. A combination of
D
Hf) of phenoxyl radicals and their correspond-
Hf and other calculated
D
parameters were found to be quite satisfactory for predicting the
antioxidant activities, or redox potentials of new phenolic antioxi-
dants. However, a model to predict the antioxidant activity from
the data on quinazoline-4(3H)-ones and its derivatives is presently
being developed.
In conclusion, the synthesized new compounds 9a–j has ex-
erted significant action on the growth of both Gram-positive and
Gram-negative bacteria, which render them as potential antimi-
crobial agents. Compounds 9c and f are very good antioxidants
due to the presence of two hydroxyl groups in them and could
be rendered for future antimitotic screening. Hence in view to cater
the needs associated with ever increasing demand of newer anti-
bacterial and antioxidant agents, exploration of these findings
can envisage these compounds as powerful antibacterial and anti-
oxidative agents.
26. Betoni, J. E. C.; Mantovani, R. P.; Barbosa, L. N.; Di stasi, L. C.; Fernandes, J. A.
Memorias do Instituto Oswaldo, Rio de Janeiro 2006, 101, 387.
27. Lien, E. J.; Ren, S.; Bui, H.-H.; Wang, R. Free Radical Biol. Med. 1999, 26, 285.
28. DPPH was dissolved in MeOH (100 mL) to obtain a concentration of 60 lM.
Acknowledgment
Serial dilutions were carried out with stock solutions (4 mmol) of the
compounds in methanol to obtain final concentrations of 0.012, 0.01, 0.008,
0.006, 0.004, 0.002, 0.0005 mmol in cuvette. Diluted solutions (2 mL each)
were mixed with DPPH (2 mL) and allowed to stand for 120 min for any
reaction to occur. The absorbance was recorded at 517 nm using a Perkin–
Elmer Lambda 25 UV–vis spectrophotometer. The experiment was performed
in triplicate and the average absorbance was noted for each concentration. The
IC50 value, which is the concentration of the test compound that reduces 50% of
We are grateful to Central Drug Research Institute, Lucknow, In-
dia for providing spectroanalytical facilities.
Supplementary data
Supplementary data (1H NMR, IR, mass, and elemental analysis)
associated with this article can be found, in the online version, at
the initial free radical concentration, was calculated in lM. Ascorbic acid was
used as reference standard, at the same concentrations in methanol as were
used for the tested compounds.
29. Sharma, P.; Kumar, A.; Upadhyay, S.; Sahu, V.; Singh, J. Eur. J. Med. Chem. 2009,
44, 251.
30. Sharma, P.; Sharma, S.; Rane, N. Bioorg. Med. Chem. 2004, 12, 3135.
31. Sharma, P.; Kumar, A.; Sharma, S.; Rane, N. Bioorg. Med. Chem. Lett. 2005, 15,
937.
References and notes
1. Ghorab, M. M. Farmco 2000, 55, 249.
2. Bradly, D. S. Tetrahedron Lett. 2001, 42, 1851.