Inorganic Chemistry
COMMUNICATION
interesting, however, that the ortho-chlorinated substitution that
yielded an especially active salan complex gave no activity for the
corresponding salen compound, rendering the ortho steric effect
as more meaningful for the salen family of complexes.
’ ACKNOWLEDGMENT
We thank Dr. Shmuel Cohen for crystallography. This re-
search received funding from the European Research Council
under the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC Grant 239603.
Because the main limitation of previously reported titanium-
(IV) complexes as cytotoxic agents is their rapid dissociation
in water solutions, the hydrolytic stability of the salen complexes
was measured under conditions similar to those previously applied
for the analogous salan complexes, as previously described.14,18
The active complexes Lig1À3Ti(OArMe2)2 all gave similar t1/2
values for hydrolysis of the labile groups of 2À4 h, which are
comparable to the values obtained for the corresponding salan
complexes despite the reduced availability of the lone-pair
electrons of nitrogen donors that are occupied by resonance,
and represent substantially higher stability than those of titano-
cene dichloride and budotitane.14,18 Similar to observations with
the salan complexes, no substantial effect of the para substituents on
the hydrolytic stability is observed. In contrast, the ortho-chlorinated
complex Lig4Ti(OArMe2)2 demonstrated some enhancement of
the hydrolytic stability with a t1/2 value of 11 h, which is an effect
similar to that observed for the salan analogue, although substantially
less pronounced.18 Nevertheless, because Lig4Ti(OArMe2)2 is
inactive biologically, we cannot attribute cytotoxicity variations
solely to the hydrolytic stability, and parameters relating to the
size, solubility, and general hydrophobicity and membrane
penetration ability are surely also of significance.
The results explicitly show for the first time that titanium(IV)
complexes with a trans configuration of the labile groups may
exhibit high cytotoxic activity, which is similar to that of the
corresponding cis complexes. We still do not know, however,
whether the two labile positions in the salen complexes operate
separately or whether reorganization on the metal center occurs
upon the first interaction to form chelate binding, due to higher
flexibility of the octahedral titanium(IV) center relative to that of
the planar platinum compounds. This adds to the diversity of the
possible titanium(IV) complexes to be synthesized and analyzed
as antitumor compounds. Additionally, the presence of the
phenylenediamine bridge in the salen complexes, which does
not diminish the hydrolytic stability, adds possibilities for the use
of various substitutions to fine-tune the complex performance
and may be advantageous if planarity is of importance, for
instance, for DNA intercalation. Another advantage of the salen
complexes over the salans is in their enhanced solubility in
biologically relevant solutions, and in their achiral nature, remov-
ing the requirement of chiral separation that involves the
medicinal application of the C2-symmetrical salans.26
’ REFERENCES
(1) (a) Bruijnincx, P. C. A.; Sadler, P. J. Curr. Opin. Chem. Biol. 2008,
12, 197. (b) Desoize, B. Anticancer Res. 2004, 24, 1529. (c) Galanski, M.;
Arion, V. B.; Jakupec, M. A.; Keppler, B. K. Curr. Pharm. Des. 2003,
9, 2078. (d) Jakupec, M. A.; Galanski, M.; Arion, V. B.; Hartinger, C. G.;
Keppler, B. K. Dalton Trans. 2008, 183. (e) Ott, I.; Gust, R. Arch. Pharm.
Chem. Life Sci. 2007, 340, 117. (f) Xu, G.; Cui, Y. B.; Cui, K.; Gou, S. H.
Prog. Chem. 2006, 18, 107. (g) van Rijt, S. H.; Sadler, P. J. Drug Discovery
Today 2009, 14, 1089.
(2) Abeysinghe, P. M.; Harding, M. M. Dalton Trans. 2007, 3474.
(3) Caruso, F.; Rossi, M. Mini-Rev. Med. Chem. 2004, 4, 49.
(4) Caruso, F.; Rossi, M.; Pettinari, C. Expert Opin. Ther. Patents
2001, 11, 969.
(5) Christodoulou, C. V.; Eliopoulos, A. G.; Young, L. S.; Hodgkins,
L.; Ferry, D. R.; Kerr, D. J. Br. J. Cancer 1998, 77, 2088.
(6) Kelter, G.; Sweeney, N. J.; Strohfeldt, K.; Fiebig, H.-H.; Tacke,
M. Anti-Cancer Drugs 2005, 16, 1091.
(7) Keppler, B. K.; Friesen, C.; Moritz, H. G.; Vongerichten, H.;
Vogel, E. Struct. Bonding (Berlin) 1991, 78, 97.
(8) K€opf-Maier, P.; K€opf, H. Chem. Rev. 1987, 87, 1137.
(9) K€opf-Maier, P.; K€opf, H. Struct. Bonding (Berlin) 1988, 70, 103.
(10) Melꢀendez, E. Crit. Rev. Oncol. Hemat. 2002, 42, 309.
(11) Strohfeldt, K.; Tacke, M. Chem. Soc. Rev. 2008, 37, 1174.
(12) Caruso, F.; Massa, L.; Gindulyte, A.; Pettinari, C.; Marchetti, F.;
Pettinari, R.; Ricciutelli, M.; Costamagna, J.; Canales, J. C.; Tanski, J.;
Rossi, M. Eur. J. Inorg. Chem. 2003, 3221.
(13) Toney, J. H.; Marks, T. J. J. Am. Chem. Soc. 1985, 107, 947.
(14) Peri, D.; Meker, S.; Shavit, M.; Tshuva, E. Y. Chem.—Eur.
J. 2009, 15, 2403.
(15) Shavit, M.; Peri, D.; Manna, C. M.; Alexander, J. S.; Tshuva,
E. Y. J. Am. Chem. Soc. 2007, 129, 12098.
(16) Tshuva, E. Y.; Ashenhurst, J. A. Eur. J. Inorg. Chem. 2009, 2203.
(17) Tshuva, E. Y.; Peri, D. Coord. Chem. Rev. 2009, 253, 2098.
(18) Peri, D.; Meker, S.; Manna, C. M.; Tshuva, E. Y. Inorg. Chem.
2011, 50, 1030.
(19) (a) Abu-Surrah, A. S.; Kettunen, M. Curr. Med. Chem. 2006,
13, 1337. (b) Barnes, K. R.; Lippard, S. J. Met. Ions Biol. Syst. 2004,
42, 143. (c) Cepeda, V.; Fuertes, M. A.; Castilla, J.; Alonso, C.; Quevedo,
C.; Perez, J. M. Anti-Cancer Agents Med. Chem. 2007, 7, 3.
(20) Aris, S. M.; Farrell, N. P. Eur. J. Inorg. Chem. 2009, 1293.
(21) (a) Chen, H.; White, P. S.; Gange, M. R. Organometallics 1998,
17, 5358. (b) Solari, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Chem.
Soc., Dalton Trans. 1992, 367.
(22) (a) Wong, T.-W.; Lau, T.-C.; Wong, W.-T. Inorg. Chem. 1999,
38, 6181. (b) Zhang, K.-L.; Xu, Y.; Song, Y.; Zhang, Y.; Wang, Z.; You,
X.-Z. J. Mol. Struct. 2001, 570, 137. (c) Khandar, A. A.; Shaabani, B.;
Belaj, F.; Bakhtiari, A. Inorg. Chim. Acta 2007, 360, 3255.
(23) (a) Salavati-Niasari, M.; Khansari, A.; Davar, F. Inorg. Chim.
Acta 2009, 362, 4937. (b) Marvel, C. S.; Aspey, S. A.; Dudley, E. A. J. Am.
Chem. Soc. 1956, 78, 4905.
In summary, the high activity observed combined with the
high hydrolytic stability makes this new family of salen-based
titanium(IV) complexes highly promising for antitumor applica-
tions. We are currently exploring additional members of this
family of complexes and their mechanism of operation.
’ ASSOCIATED CONTENT
(24) Durfee, L. D.; Latesky, S. L.; Rothwell, I. P.; Huffman, J. C.;
Folting, K. Inorg. Chem. 1985, 24, 4569.
(25) Sweeney, N. J.; Mendoza, O. M.; M€uller-Bunz, H.; Pampillꢁon,
C.; Rehmann, F.-J. K.; Strohfeldt, K.; Tacke, M. J. Organomet. Chem.
2005, 690, 4537.
Supporting Information. Crystallographic data for Lig3,4Ti-
S
b
(OArMe2)2 and experimental details. This material is available free of
(26) Manna, C. M.; Tshuva, E. Y. Dalton Trans. 2010, 39, 1182.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: tshuva@chem.ch.huji.ac.il. Fax: +972-2-6584282.
7948
dx.doi.org/10.1021/ic201296h |Inorg. Chem. 2011, 50, 7946–7948