10.1002/anie.201712487
Angewandte Chemie International Edition
COMMUNICATION
To explore the second question, 13C labeling study was
conducted (Scheme 5b). We hypothesized that, if the reaction
involved cleavage of the less hindered distal C−C bond, a CO
de-insertion and re-insertion into the less hindered alkyl group
would have to occur (vide supra, Scheme 2a). Thus, if this were
the case, use of the Rh catalyst containing 13CO ligands would
introduce 13C-labeled carbonyl moiety into the product. Indeed,
replacement of [Rh(CO)2Cl]2 with [Rh(13CO)2Cl]2 under the
standard reaction conditions afforded product 2a in 82% yield
2012, 2683; l) F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613;
m) A. Dermenci, J. W. Coe, G. Dong, Org. Chem. Front. 2014, 1, 567;
n) G. Dong, in Top. Curr. Chem., Vol. 346, Springer-Verlag, Berlin,
2014; o) M. Murakami, N. Ishida, in Cleavage of Carbon-Carbon Single
Bonds by Transition Metals, Wiley-VCH Verlag GmbH & Co. KGaA,
2015; p) L. Souillart, N. Cramer, Chem. Rev. 2015, 115, 9410; q) P.-h.
Chen, G. Dong, Chem. Eur. J. 2016, 22, 18290; r) P.-h. Chen, B. A.
Billett, T. Tsukamoto, G. Dong, ACS Cat. 2017, 7, 1340; s) G.
Fumagalli, S. Stanton, J. F. Bower, Chem. Rev. 2017, 117, 9404.
For representative examples, see: a) M. Murakami, T. Itahashi, Y. Ito, J.
Am. Chem. Soc. 2002, 124, 13976; b) L. Souillart, E. Parker, N. Cramer,
Angew. Chem. Int. Ed. 2014, 53, 3001; c) H. M. Ko, G. Dong, Nat.
Chem. 2014, 6, 739; d) L. Souillart, N. Cramer, Angew. Chem. Int. Ed.
2014, 53, 9640; e) E. Parker, N. Cramer, Organometallics 2014, 33,
780; f) L. Souillart, N. Cramer, Chem. Eur. J. 2015, 21, 1863; g) X.
Zhou, G. Dong, J. Am. Chem. Soc. 2015, 137, 13715; h) X. Zhou, H. M.
Ko, G. Dong, Angew. Chem. Int. Ed. 2016, 55, 13867.
[2]
with 21% 13C incorporation. Give that only
5
mol%
[Rh(13CO)2Cl]2 was used, 86% 13CO from the Rh complex has
been transferred into product. When the reaction was terminated
at an earlier stage, higher 13C incorporation (34%) was observed
without significant 13C incorporation in recovered starting
material (for more details, see Supporting Information). These
observations suggested that (i) decarbonylation/CO-reinsertion
must have occurred (Scheme 5c), (ii) the exchange between the
coordinated CO on Rh and the free CO is faster than the
subsequent steps and (iii) reductive elimination of the
rhodacyclopentanone intermediate to give back cyclobutanone
1a is significantly slower than migratory insertion into the alkyne
moiety. Hence, this observation is consistent with the hypothesis
that the reaction may involve cleavage of the less hindered distal
[3]
[4]
For the (6+2) coupling of 2-vinyl cyclobutanones with olefins, see: a) P.
A. Wender, A. G. Correa, Y. Sato, R. Sun, J. Am. Chem. Soc. 2000,
122, 7815; b) T. Matsuda, A. Fujimoto, M. Ishibashi, M. Murakami,
Chem. Lett. 2004, 33, 876; c) T. Matsuda, M. Makino, M. Murakami,
Angew. Chem. Int. Ed. 2005, 44, 4608.
a) D. M. Roundhill, D. N. Lawson, G. Wilkinson, J. Chem. Soc. (A) 1968,
845; b) F. J. McQuillin, K. G. Powell, J. Chem. Soc., Dalton Trans. 1972,
2123; c) M. Murakami, H. Amii, Y. Ito, Nature 1994, 370, 540; d) M.
Murakami, H. Amii, K. Shigeto, Y. Ito, J. Am. Chem. Soc. 1996, 118,
8285; e) G.-W. Wang, N. G. McCreanor, M. H. Shaw, W. G.
Whittingham, J. F. Bower, J. Am. Chem. Soc. 2016, 138, 13501.
a) T. Xu, G. Dong, Angew. Chem. Int. Ed. 2012, 51, 7567; b) T. Xu, H.
M. Ko, N. A. Savage, G. Dong, J. Am. Chem. Soc. 2012, 134, 20005; c)
P.-h. Chen, T. Xu, G. Dong, Angew. Chem. Int. Ed. 2014, 53, 1674; d)
T. Xu, G. Dong, Angew. Chem. Int. Ed. 2014, 53, 10733; e) L. Deng, T.
Xu, H. Li, G. Dong, J. Am. Chem. Soc. 2016, 138, 369; f) G. Lu, C.
Fang, T. Xu, G. Dong, P. Liu, J. Am. Chem. Soc. 2015, 137, 8274.
For representative examples of Ni-catalyzed intermolecular
cyclobutanone/alkyne couplings, see: a) M. Murakami, S. Ashida, T.
Matsuda, J. Am. Chem. Soc. 2005, 127, 6932; b) M. Murakami, S.
Ashida, T. Matsuda, Tetrahedron 2006, 62, 7540; c) P. Kumar, J. Louie,
Org. Lett. 2012, 14, 2026; d) N. Ishida, T. Yuhki, M. Murakami, Org.
Lett. 2012, 14, 3898; e) K. Y. T. Ho, C. Aïssa, Chem. Eur. J. 2012, 18,
3486; f) Y. Li, Z. Lin, Organometallics 2013, 32, 3003; g) A. Thakur, J. L.
Evangelista, P. Kumar, J. Louie, J. Org. Chem. 2015, 80, 9951; h) M.
Barday, K. Y. T. Ho, C. T. Halsall, C. Aïssa, Org. Lett. 2016, 18, 1756.
For representative examples of (3+2+1) reactions involving
cyclopropanes, see: a) S. Mazumder, D. Shang, D. E. Negru, M.-H.
Baik, P. A. Evans, J. Am. Chem. Soc. 2012, 134, 20569; b) S. Kim, Y.
K. Chung, Org. Lett. 2014, 16, 4352; c) Y. Feng, Z.-X. Yu, J. Org. Chem.
2015, 80, 1952; d) M. H. Shaw, R. A. Croft, W. G. Whittingham, J. F.
Bower, J. Am. Chem. Soc. 2015, 137, 8054; e) M. H. Shaw, N. G.
McCreanor, W. G. Whittingham, J. F. Bower, J. Am. Chem. Soc. 2015,
137, 463; f) S. Bose, J. Yang, Z.-X. Yu, J. Org. Chem. 2016, 81, 6757;
g) M. H. Shaw, W. G. Whittingham, J. F. Bower, Tetrahedron 2016, 72,
2731.
C−C bond, followed by
a decarbonylation/CO reinsertion
process, though the pathway initiated from direct activation of
the bulkier proximal C−C bond cannot be completely ruled out at
this stage.
[5]
[6]
In summary, we have developed the first intramolecular
coupling between cyclobutanones and alkynes to construct
versatile fused cyclohexenone scaffolds. In this reaction, 2π-
insertion can selectively take place at the more sterically
hindered proximal position, which significantly extends the “cut-
and-sew” scope with cyclobutanones thereby opening the door
for accessing other fused structures. Detailed mechanistic
studies are ongoing in our laboratory.
Acknowledgements
[7]
We acknowledge NIGMS (R01GM109054-01) for funding. L.J. is
supported by a CSC fellowship. We thank Mr. Ki-young Yoon for
X-ray structures, Dr. Antoni Jurkiewicz for NMR advices and Dr.
Jin Qin for MS advices. We thank Mr. Renhe Li for checking the
experiment, and Mr. Jianchun Wang for discussions about the
reaction mechanism.
Keywords: rhodium catalysis • cyclobutanone • fused ring
synthesis • C‒C activation• cut-and-sew
[8]
[9]
Y. Koga, K. Narasaka, Chem. Lett. 1999, 28, 705.
L. Jiao, M. Lin, L.-G. Zhuo, Z.-X. Yu, Org. Lett. 2010, 12, 2528.
[10] M. H. Shaw, E. Y. Melikhova, D. P. Kloer, W. G. Whittingham, J. F.
Bower, J. Am. Chem. Soc. 2013, 135, 4992.
[1]
For selected reviews, see: a) R. H. Crabtree, Chem. Rev. 1985, 85,
245; b) W. D. Jones, Nature 1993, 364, 676; c) M. Murakami, Y. Ito, in
Top. Organomet. Chem., Vol. 3, 1999, pp. 97-129; d) B. Rybtchinski, D.
Milstein, Angew. Chem. Int. Ed. 1999, 38, 870; e) C.-H. Jun, Chem.
Soc. Rev. 2004, 33, 610; f) M. Miura, T. Satoh, in Top. Organomet.
Chem., Vol. 14, 2005, pp. 1-20; g) D. Necas, M. Kotora, Curr. Org.
Chem. 2007, 11, 1566; h) M. Murakami, T. Matsuda, Chem. Commun.
2011, 47, 1100; i) T. Seiser, T. Saget, D. N. Tran, N. Cramer, Angew.
Chem. Int. Ed. 2011, 50, 7740; j) A. Korotvicka, D. Necas, M. Kotora,
Curr. Org. Chem. 2012, 16, 1170; k) K. Ruhland, Eur. J. Org. Chem.
[11] Extending the linker to form 6-6 fused rings has also been attempted.
While the desired product can be obtained, the yield was rather low (8-
10%) and decarbonylation to form the cyclopropane side product was
dominant, which can be explained by a slow migratory insertion step.
[12] X. Jiang, D. F. Covey, J. Org. Chem. 2002, 67, 4893.
[13] CCDC 1589374-1589376 contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre
This article is protected by copyright. All rights reserved.