Requirements for Flavone Cytotoxicity and Binding
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 13 2337
(3) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.;
Lin, C. M.; Hamel, E. Synthesis and Evaluation of Stilbene and
Dihydrostilbene Derivatives as Potential Agents that Inhibit
Tubulin Polymerization. J . Med. Chem. 1991, 34, 2579-2588.
(4) Edwards, M. L.; Stemerick, D. M.; Sunkara, P. S. Chalcones: A
New Class of Antimitotic Agents. J . Med. Chem. 1990, 33, 1948-
1954.
(5) Brewer, C. F.; Loike, J . D.; Horwitz, S. B.; Sternlicht, H.; Gensler,
W. J . Conformational Analysis of Podophyllotoxin and its
Congeners. Structure-Activity Relationship in Microtubule
Assembly. J . Med. Chem. 1979, 22, 215-221.
(6) Safa, A. R.; Hamel, E.; Felsted, R. L. Photoaffinity Labeling of
Tubulin Subunits with a Photoactive Analogue of Vinblastine.
Biochemistry 1987, 26, 97-102.
(7) Bai, R.; Pettit, G. R.; Hamel, E. Binding of Dolastatin 10 to
Tubulin at a Distinct Site for Peptide Antimitotic Agents Near
the Exchangeable Nucleotide and Vinca Alkaloid Sites. J . Biol.
Chem. 1990, 265, 17141-17149.
(8) Bai, R.; Pettit, G. R.; Hamel, E. Dolastatin 10, a Powerful
Cytostatic Peptide Derived from a Marine Animal. Inhibition of
Tubulin Polymerization Mediated through the Vinca Alkaloid
Binding Domain. Biochem. Pharmacol. 1990, 39, 1941-1949.
(9) Bai, R.; Cichacz, Z. A.; Herald, C. L.; Pettit, G. R.; Hamel, E.
Spongistatin 1, a Highly Cytotoxic, Sponge-Derived, Marine
Natural Product that Inhibits Mitosis, Microtubule Assembly,
and the Binding of Vinblastine to Tubulin. Mol. Pharmacol.
1993, 44, 757-766.
(10) Rao, S.; Krauss, N. E.; Heerding, J . M.; Swindell, C. S.; Ringel,
I.; Orr, G. A.; Horwitz, S. B. 3′-(p-Azidobenzamido)taxol Photo-
labels the N-terminal 31 Amino Acids of â-Tubulin. J . Biol.
Chem. 1994, 269, 3132-3134.
(11) Paull, K. D.; Lin, C. M.; Malspeis, L.; Hamel, E. Identification
of Novel Antimitotic Agents Acting at the Tubulin Level by
Computer-assisted Evaluation of Differential Cytotoxicity Data.
Cancer Res. 1992, 52, 3892-3900.
(12) Boyd, M. R.; Paull, K. D. Some Practical Considerations and
Applications of the NCI in vitro Drug Discovery Screen. Drug
Dev. Res. 1995, 34, 91-109.
(13) Beutler, J . A.; Cardellina, J . H., II; Lin, C. M.; Hamel, E.; Cragg,
G. M.; Boyd, M. R. Centaureidin, A Cytotoxic Flavone from
Polymnia fruticosa, Inhibits Tubulin Polymerization. BioMed.
Chem. Lett. 1993, 3, 581-584.
(14) Beutler, J . A.; Cardellina, J . H., II; Gray, G. N.; Prather, T. R.;
Shoemaker, R. H.; Boyd, M. R.; Lin, C. M.; Hamel, E.; Cragg,
G. M. Two New Cytotoxic Chalcones from Calythropsis aurea.
J . Nat. Prod. 1993, 56, 1718-1722.
(15) Lichius, J . J .; Thoison, O.; Montagnac, A.; Pais, M.; Gue´ritte-
Voegelein, F.; Se´venet, T.; Cosson, J . P.; Hadi, A. H. A. Antimi-
totic and Cytotoxic Flavonols from Zieridium pseudobtusifolium
and Achronycha porteri. J . Nat. Prod. 1994, 57, 1012-1016.
(16) Shi, Q.; Chen, K.; Li, L.; Chang, J . J .; Autry, C.; Kozuka, M.;
Konoshima, T.; Estes, J . R.; Lin, C. M.; Hamel, E.; McPhail, A.
T.; McPhail, D. R.; Lee, K. H. Antitumor Agents, 154. Cytotoxic
and Antimitotic Flavonols from Polanisia dodecandra. J . Nat.
Prod. 1995, 58, 475-482.
(17) De Meyer, N.; Haemers, A.; Mishra, L.; Pandey, H. K.; Pieters,
L. A. C.; Vanden Berghe, D. A.; Vlietinck, A. J . 4′-Hydroxy-3-
methoxyflavones with Potent Antipicornavirus Activity. J . Med.
Chem. 1991, 34, 736-746.
7,3′-Dih yd r oxy-3,6,4′-tr im eth oxyfla von e (12). The bis-
(benzyloxy)flavone 85 (0.5 g, 1 mmol), dissolved in 50 mL of
methanol, was stirred with 0.5 g of Pd/C catalyst (10%).
A
steady stream of H2 gas was passed over the suspension for
90 min. The catalyst was removed by filtration and the filtrate
evaporated. The residue was crystallized from methanol (yield
0.28 g, 85%). 1H NMR: δ 3.80 (3H, s, OCH3), 3.93 (6H, s, 2 ×
OCH3), 5.70 (1H, s, OH), 6.40 (1H, br s, OH), 6.90 (2H, s),
7.45-7.75 (3H, m). HREIMS: m/z 344.0899; calcd for C18H16O7,
344.0896.
7,3′-Dih yd r oxy-3,4′-d im eth oxy-5,6-d im eth ylfla von e (9).
Flavone 9 was prepared from 93 by hydrogenolysis, as
described for the preparation of 12 (91% yield). 1H NMR: δ
2.20 (3H, s), 2.82 (3H, s), 3.78 (3H, s, OCH3), 3.93 (3H, s,
OCH3), 6.80 (1H, s), 7.06 (1H, d, J ) 10 Hz), 7.60 (1H, d, J )
10 Hz), 7.95 (1H, s). HREIMS: m/z 342.1106; calcd for
C
19H18O6, 342.1103.
3′-Hyd r oxy-3,7,4′-tr im eth oxy-5,6-d im eth ylfla von e (18).
Compound 94 was debenzylated by hydrogenolysis following
the procedure described for the preparation of 12 (92% yield).
1H NMR: δ 2.17 (3H, s), 2.78 (3H, s), 3.25 (3H, s, OCH3), 3.90
(3H, s, OCH3), 3.95 (3H, s, OCH3), 6.80 (1H, s), 7.00 (1H, d, J
) 10 Hz), 7.55, 7.65 (2H, m). HREIMS: m/z 356.1263; calcd
for C20H20O6, 356.1259.
3′-Hyd r oxy-3,5,7,4′-tetr a m eth oxyfla von e (24). Deben-
zylation of 96 by hydrogenolysis as described for the prepara-
tion of 12 gave 24 (yield 80%). 1H NMR: δ 3.77 (3H, s, OCH3),
3.88 (3H, s, OCH3), 3.90 (3H, s, OCH3), 3.93 (3H, s, OCH3),
6.35 (1H, s), 6.55 (1H, s), 6.95 (1H, d, J ) 9 Hz), 7.50-7.65
(2H, m). HREIMS: m/z 358.1052; calcd for C19H18O7, 358.1052.
6,3′-Dih yd r oxy-3,5,7,4′-tetr a m eth oxyfla von e (21). De-
benzylation of 97 by hydrogenolysis in the presence of Pd/C
(10%) catalyst, as described for the preparation of 12, yielded
89% of 21. 1H NMR: δ 3.75 (3H, s, OCH3), 3.89 (3H, s, OCH3),
3.92 (3H, s, OCH3), 3.98 (3H, s, OCH3), 6.90 (1H, s, arom),
7.45-7.65 (3H, m). HREIMS: m/z 374.1007; calcd for C19H18O8,
374.1002.
7-Eth oxy-5,3′-dih ydr oxy-3.4′-dim eth oxyflavon e (8). Fla-
vone 8 was prepared by the debenzylation of 98 by hydro-
genolysis in the presence of Pd/C (10%) catalyst, as described
for the preparation of 12 (82% yield). 1H NMR: δ 1.35 (3H, t,
J ) 8.5 Hz), 3.72 (3H, s, OCH3), 3.87 (3H, s, OCH3), 4.01 (2H,
q, J ) 8.5 Hz), 6.21 (1H, s), 6.36 (1H, s), 6.88 (1H, d, J ) 8.5
Hz), 7.45-7.60 (2H, m). HREIMS: m/z 358.1041; calcd for
C
19H18O7, 358.1052.
Biologica l Assa ys. In vitro tubulin polymerization and
colchicine binding assays were performed as previously re-
ported.2,55 Tubulin polymerization results shown in Table 4
are averages ( SD from three determinations, using a tubulin
concentration of 10 µM; the colchicine inhibition assay results
were derived from three determinations. The 60-cell cytotox-
icity screen has been described previously.12 Due to limited
compound availability, results shown in Tables 1-3 were
derived from single tests of each compound in the full 60-cell
panel.
(18) Kupchan, S. M.; Bauerschmidt, E. Cytotoxic Flavonols from
Baccharis sarothroides. Phytochemistry 1971, 10, 664-666.
(19) LeQuesne, P. W.; Menachery, M. D.; Raffauf, R. F. Antitumor
Plants. Part IX. Structural Reassignments for Three Flavonoids
from Lychnophora affinis Gardn. J . Nat. Prod. 1979, 42, 320-
321.
Ack n ow led gm en t. We thank M. E. Wall (Research
Triangle Institute), K. H. Lee (University of North
Carolina), E. R. Silveira (Universidade Federale do
Ceara´, Brazil), and R. A. Smith (ICN Pharmaceuticals)
for permission to quote NCI testing data for compounds
which they had supplied to the NCI; A. Monks and D.
Scudiero for the 60-cell testing; G. N. Gray for mass
spectroscopy; and J . J ohnson for assistance in arranging
antitumor screening of NCI repository compounds.
(20) Arisawa, M.; Hayashi, T.; Shimizu, M.; Morita, N.; Bai, H.; Kuze,
S.; Ito, Y. Isolation and Cytotoxicity of Two New Flavonoids from
Chrysosplenum grayanum and Related Flavonols. J . Nat. Prod.
1991, 54, 898-901.
(21) Kingston, D. G. I.; Rao, M. M.; Zucker, W. V. Plant Anticancer
Agents. IX. Constituents of Hyptis tomentosa. J . Nat. Prod. 1979,
42, 496-499.
(22) Raffauf, R. F.; Menachery, M. D.; LeQuesne, P. W.; Arnold, E.
V.; Clardy, J . Antitumor Plants. 11. Diterpenoid and Flavonoid
Constituents of Bromelia pinguin L. J . Org. Chem. 1981, 46,
1094-1098.
(23) Hou, R. S.; Duh, C. Y.; Wang, S. K.; Chang, T. T. Cytotoxic
Flavonoids from the Leaves of Melicope triphylla. Phytochemistry
1994, 35, 271-272.
Refer en ces
(24) Bittner, M.; Silva, M.; Vargas, J .; Bohlmann, F. Biologically
Active Flavones from Gutierrezia resinosa. Phytochemistry 1983,
22, 1523-1524.
(25) Dong, X. P.; Che, C. T.; Farnsworth, N. R. Cytotoxic Flavonols
from Gutierrezia microcephala. J . Nat. Prod. 1987, 50, 337.
(26) Saleh, A. A.; Cordell, G. A.; Farnsworth, N. R. Isolation of 3,6-
Dimethoxy-4′,5,7-trihydroxyflavone from Acanthospermum gla-
bratum. Lloydia 1976, 39, 456-458.
(1) Rowinsky, E. K.; Donehower, R. C. The Clinical Pharmacology
and Use of Antimicrotubule Agents in Cancer Chemotherapeu-
tics. Pharmacol. Ther. 1991, 52, 35-84.
(2) Muzzafar, A.; Brossi, A.; Lin, C. M.; Hamel, E. Antitubulin
Effects of Derivatives of 3-Demethylthiocolchicine, Methylthio
Ethers of Natural Colchicinoids, and Thioketones Derived from
Thiocolchicine. Comparison with Colchicinoids. J . Med. Chem.
1990, 33, 567-571.