Article
Inorganic Chemistry, Vol. 48, No. 20, 2009 9665
the growing interest in this area, most of the works are focused
on the studies of organic systems,4,5 with transition metal
complex systems less extensively explored despite numerous
works on metal complexes with rich spectroscopic properties
being known.6 A particular class of transition metal complexes
that has aroused immense interest is the luminescent rhenium(I)
tricarbonyl diimine complexes that show rich and promising
photophysical properties.7 The metal-to-ligand charge-transfer
(MLCT) excited states of these luminescent organometallic
systems are well documented to show large responsive changes
toward host-guest complexation.8 Although there have been
some studies reporting the incorporation of the triarylboron
moiety into Pt(II) and Ir(III) MLCT complexes, most of the
reported complexes are connected to the boron moiety through
the polypyridine ligands.6 It is envisaged that upon incorpora-
tion of the triarylboron moiety through an alkynyl ligand to the
rhenium(I) complexes, the rich photophysical properties of the
MLCT excited state of these metal complex systems may be
capable of serving as versatile spectroscopic reporters and
probes for the fluoride ion. Interestingly, the use of rhenium(I)
tricarbonyl diimine complexes for anion sensing is relatively less
explored when compared with cation sensing and other metal
complex systems.9 Herein, we report the synthesis of triarylbor-
on-containing rhenium(I) tricarbonyl diimine complexes and
their anion-binding properties for fluoride ion.
Scheme 1. Synthesis of Complexes 1-3
driedand freshlydistilledbeforeuse. Therhenium(I)complex
precursors10 and tris(4-ethynyl-2,3,5,6-tetramethylphenyl)-
borane11 were synthesized according to reported procedures
or with slight modifications. Other materials and reagents
were of analytical grade and were used without further
purification.
Synthesis and Characterization of the Rhenium(I) Complexes
1-3. [Re(CO)3(2,9-Me2phen)(CtC-C6Me4-B(C6Me4-CtC-
H)2)] (1). This was prepared by modification of a previously
reported procedure for related alkynylrhenium(I) tricarbonyl
diimine complexes (Scheme 1).7g,12 A mixture of [Re(CO)3(2,9-
Me2phen)Br] (200 mg, 0.36 mmol), TlPF6 (138 mg, 0.39 mmol),
and tris(4-ethynyl-2,3,5,6-tetramethylphenyl)borane (260 mg,
0.54 mmol) in THF (100 mL) was heated under reflux in an
inert atmosphere of nitrogen in the presence of Et3N (5 mL) for
48 h. The yellowish orange suspension was then filtered to
remove the insoluble TlBr, and the orange filtrate was concen-
trated in vacuo. The residue was purified by column chroma-
tography on silica gel using dichloromethane as eluent. The
second band, which contains the desired product, was collected
and evaporated to dryness. Subsequent recrystallization by
layering hexane onto a concentrated dichloromethane solution
of the product gave 1 as analytically pure orange crystal. Yield:
Experimental Details
All reactions were carried out under an argon atmosphere
by using standard Schlenk techniques. The solvents were
(7) (a) Wrighton, M. S.; Morse, D. L. J. Am. Chem. Soc. 1974, 96, 998. (b)
Morse, D. L.; Wrighton, M. S. J. Am. Chem. Soc. 1976, 98, 3931. (c) Luong,
J. C.; Nadjo, L.; Wrighton, M. S. J. Am. Chem. Soc. 1978, 100, 5790. (d) Luong,
J. C.; Faltynek, R. A.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 1597. (e)
Fredericks, S. M.; Luong, J. C.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101,
7415. (f ) Giordano, P. J.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101, 2888. (g)
Yam, V. W.-W.; Lau, V. C.-Y.; Cheung, K.-K. Organometallics 1995, 14, 2749.
(h) Yam, V. W.-W. Chem. Commun. 2001, 789. (i) Yam, V. W.-W.; Ko, C.-C.;
Zhu, N. J. Am. Chem. Soc. 2004, 126, 12734. ( j) Ko, C.-C.; Wu, L.-X.; Wong,
K. M.-C.; Zhu, N.; Yam, V. W.-W. Chem. Eur. J. 2004, 10, 766. (k) Lee,
P. H.-M.; Ko, C.-C.; Zhu, N.; Yam, V. W.-W. J. Am. Chem. Soc. 2007, 129, 6058.
(l) Lam, S.-T.; Wang, G.-X.; Yam, V. W.-W. Organometallics 2008, 27, 4545. (m)
Wong, K. M.-C.; Lam, S. C.-F.; Ko, C.-C.; Zhu, N.; Yam, V. W.-W.; Roue, S.;
Lapinte, C.; Fathallah, S.; Costuas, K.; Kahlal, S.; Halet, J.-F. Inorg. Chem. 2003,
42, 7086. (n) Chong, S. H.-F.; Lam, S. C.-F.; Yam, V. W.-W.; Zhu, N.; Cheung,
K.-K.; Fathallah, S.; Costuas, K.; Halet, J.-F. Organometallics 2004, 23, 4924.
(8) (a) MacQueen, D. B.; Schanze, K. S. J. Am. Chem. Soc. 1991, 113,
6108. (b) Shen, Y.; Sullivan, B. P. Inorg. Chem. 1995, 34, 6235. (c) Yam,
V. W.-W.; Wong, K. M.-C.; Lee, V. W.-M.; Lo, K. K.-W.; Cheung, K.-K.
Organometallics 1995, 14, 4034. (d) Shen, Y.; Sullivan, B. P. J. Chem. Educ.
1997, 74, 685. (e) Uppadine, L. H.; Redman, J. E.; Dent, S. W.; Drew, M. G. B.;
Beer, P. D. Inorg. Chem. 2001, 40, 2860. (f ) Sun, S. S.; Lee, A. J.; Zavalij, P. Y.
Inorg. Chem. 2003, 42, 3445. (h) Lewis, J. D.; Moore, J. N. Dalton Trans. 2004,
1376. (g) Lazarides, T.; Miller, T. A.; Jeffery, J. C.; Ronson, T. K.; Adams, H.;
Ward, M. D. J. Chem. Soc., Dalton Trans. 2005, 528. (h) Li, M.-J.; Ko, C.-C.;
Duan, G.-P.; Zhu, N.; Yam, V. W.-W. Organometallics 2007, 26, 6091.
(9) (a) Redman, J. E.; Beer, P. D.; Dent, S. W.; Drew, M. G. B. Chem.
Commun. 1998, 231. (b) Beer, P. D.; Timoshenko, V.; Maestri, M.; Passaniti, P.;
Balzani, V. Chem. Commun. 1999, 1755. (c) Uppadine, L. H.; Keene, F. R.; Beer,
P. D. J. Chem. Soc., Dalton Trans. 2001, 2188. (d) Cary, D. R.; Zaitseva, N. P.;
Gray, K.; O'Day, K. E.; Darrow, C. B.; Lane, S. M.; Peyser, T. A.; Satcher, J. H.,
Jr.; Van Antwerp, W. P.; Nelson, A. J.; Reynolds, J. G. Inorg. Chem. 2002, 41,
1662. (e) Beer, P. D.; Sambrook, M. R.; Curiel, D. Chem. Commun. 2006, 2105.
(f ) Tzeng, B.-C.; Chen, Y.-F.; Wu, C.-C.; Hu, C.-C.; Chang, Y.-T.; Chen, C.-K.
New J. Chem. 2007, 31, 202. (g) Lin, T.-P.; Chen, C.-Y.; Wen, Y.-S.; Sun, S.-S.
Inorg. Chem. 2007, 46, 9201.
1
90 mg, 26%. H NMR (400 MHz, CD3CN, 298 K, relative to
Me4Si): δ 1.58 (s, 6H, -CH3), 1.68 (s, 6H, -CH3), 1.80 (s, 12H,
-CH3), 2.26 (s, 12H, -CH3), 3.29 (s, 6H, -CH3), 3.79 (s, 2H,
-CtCH), 7.86 (d, J = 8.2 Hz, 2H, 3- and 8-phenanthrolinyl
H’s), 7.99 (s, 2H, 5- and 6-phenanthrolinyl H’s), 8.50 (d, J = 8.2
Hz, 2H, 4- and 7-phenanthrolinyl H’s). Positive FAB-MS: m/z
959 [M]þ, 931 [M-CO]þ. IR (KBr disk, ν/cm-1): 1883 (s), 1903
(s), 2003 (s) ν(CtO) ; 2091 (w) ν(CtC), 2202 (w) ν(CtC).
Elemental analyses. Found (%): C 66.12, H 5.24, N 2.78. Calcd
for 1: C 66.36, H, 5.04, N 2.92.
[Re(CO)3(phen)(CtC-C6Me4-B(C6Me4-CtCH)2)] (2). This
was prepared according to a procedure similar to that described
for 1, except [Re(CO)3(phen)Br] (170 mg, 0.33 mmol) was used
in place of [Re(CO)3(2,9-Me2phen)Br] to give 2 as orange
crystals. Yield: 80 mg, 24%. 1H NMR (400 MHz, CDCl3, 298
K, relative to Me4Si): δ 1.58 (s, 6H, -CH3), 1.68 (s, 6H, -CH3),
1.80 (s, 12H, -CH3), 2.26 (s, 12H, -CH3), 3.79 (s, 2H,
-CtCH), 7.75 (m, 2H, 3- and 8-phenanthrolinyl H’s), 7.96 (s,
2H, 5- and 6-phenanthrolinyl H’s), 8.45 (d, J = 8.2 Hz, 2H, 4-
and 7-phenanthrolinyl H’s), 9.41 (d, J = 5.1 Hz, 2H, 2- and 9-
phenanthrolinyl H’s). Positive FAB-MS: m/z 930 [M]þ, 902
[M-CO]þ. IR (KBr disk, ν/cm-1): 1876 (s), 1911 (s), 2004 (s)
ν(CtO) ; 2095 (w) ν(CtC), 2202 (w) ν(CtC). Elemental
analyses. Found (%): C 65.52, H 5.35, N 2.75. Calcd for 2: C
65.50, H 5.17; N 2.99.
[Re(CO)3(5,6-Br2phen)(CtC-C6Me4-B(C6Me4-CtCH)2)]
(3). This was prepared according to a procedure similar to that
described for 1, except [Re(CO)3(5,6-Br2phen)Br] (230 mg, 0.33
mmol) was used in place of [Re(CO)3(2,9-Me2phen)Br] to give 3
(10) (a) Drew, M. G. B.; Davis, K. M.; Edwards, D. A.; Marshalsea, J.
J. Chem. Soc., Dalton Trans. 1978, 1098. (b) Schmidt, S. P.; Trogler, W. C.;
Basolo, F. Inorganic syntheses 1985, 23, 41. (c) Black, S. I.; Young, G. B.
Polyhedron 1989, 8, 585.
(11) Yamaguchi, S.; Shirasaka, T.; Tamao, K. Org. Lett. 2000, 2, 4129.
(12) Liddle, B. J.; Lindeman, S. V.; Reger, D. L.; Gardinier, J. R. Inorg.
Chem. 2007, 46, 8484.