4116
E. M. van Oosten et al. / Tetrahedron Letters 52 (2011) 4114–4116
5. Aziridines and epoxides in organic synthesis; Yudin, A. K., Ed.; Wiley Weinheim:
Chichester, 2006.
6. Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501–1516.
7. Cai, L. S.; Lu, S. Y.; Pike, V. W. Eur. J. Org. Chem. 2008, 2853–2873.
8. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int. Ed. 2008, 47,
8998–9033.
9. Vasdev, N.; van Oosten, E. M.; Stephenson, K. A.; Zadikian, N.; Yudin, A. K.;
Lough, A. J.; Houle, S.; Wilson, A. A. Tetrahedron Lett. 2009, 50, 544–547.
10. Farrokhzad, S.; Diksic, M.; Yamamoto, L.; Feindel, W. Can. J. Chem. 1984, 62,
2107–2112.
11. Gillings, N. M.; Gee, A. D. ‘‘Aziridines in the Synthesis of 11C and 18F-Labelled
Amino Acids’’; 12th International Symposium on Radiopharmaceutical
Chemistry, 1997, Uppsala, Sweden.
12. Lehel, S.; Horvath, G.; Boros, I.; Mikecz, P.; Márián, T.; Szentmiklósi, A. J.; Trón,
L. J. Labelled Compd. Radiopharm. 2000, 43, 807–815.
13. Roehn, U.; Becaud, J.; Mu, L. J.; Srinivasan, A.; Stellfeld, T.; Fitzner, A.; Graham,
K.; Dinkelborg, L.; Schubiger, A. P.; Ametamey, S. M. J. Fluorine Chem. 2009, 130,
902–912.
14. Stephenson, K. A.; van Oosten, E. M.; Wilson, A. A.; Meyer, J. H.; Houle, S.;
Vasdev, N. Neurochem. Int. 2008, 53, 173–179.
15. Stephenson, K. A.; Wilson, A. A.; Meyer, J. H.; Houle, S.; Vasdev, N. J. Med. Chem.
2008, 51, 5093–5100.
16. Kopka, K.; Law, M. P.; Breyholz, H. J.; Faust, A.; Holtke, C.; Riemann, B.; Schober,
O.; Schafers, M.; Wagner, S. Curr. Med. Chem. 2005, 12, 2057–2074.
17. van Waarde, A.; Vaalburg, W.; Doze, P.; Bosker, F. J.; Elsinga, P. H. Curr. Pharm.
Des. 2004, 10, 1519–1536.
Figure 1. HPLC radiochromatograms showing the comparison following ring
opening reactions of [K222][18F] with 1 (Table 1, entry 4; top; isolated following
deprotection and acylation with Bz–Cl) or 6 (Table 1, entry 9; bottom), by minor
modifications to our previously described radiofluorination and chromatography
conditions.9
18. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–
2021.
19. Alvernhe, G. M.; Ennakoua, C. M.; Lacombe, S. M.; Laurent, A. J. J. Org. Chem.
1981, 46, 4938–4948.
20. Christe, K. O.; Wilson, W. W.; Wilson, R. D.; Bau, R.; Feng, J. A. J. Am. Chem. Soc.
1990, 112, 7619–7625.
described.19,28 Multi-NMR (1H, 13C and 19F) spectroscopic analysis
was carried out on the high-order spin system for 1-fluoro-2-prop-
anamine (formate salt)19,28 and of 5. The 1H and 19F NMR spectro-
scopic results indicate that the 1-fluoro-2-propanamine moiety
conforms to an ABCD3X spin system and the 2-fluoropropanamine
group (5) represents a combination of A3BCDX and A3BEFX spin
systems,29 and is attributed to the stereocenter within this group.
As regiocontrol during ring opening of aziridines with fluoride
sources was demonstrated herein, our laboratories are synthesiz-
ing and characterizing new 18F- and 19F-fluoroamines via this
methodology and applying this work to radiopharmaceutical
production.
CAUTION: Precautionary measures should be established prior
to repeating aspects of this work, particularly when 18F and the
highly toxic and volatile 2-methylaziridine and/or anhydrous HF
(also highly corrosive) are employed. Before commencing work
with anhydrous HF, first-aid treatment procedures should be avail-
able and known to all laboratory personnel.
21. Anhydrous HF was dried over K2NiF6, where the purple colour of the HF
indicated the absence of water. The reactions in aHF (ca. 10 mmol, distilled at
1
À78 °C) were carried out in well-dried
4-in. FEP (copolymer of
mol of 1 or
perfluoroethylene and perfluoropropylene) tubes using 310–370
l
6. Following the reaction, aHF was removed under vacuum, diluted with
CH2Cl2 and filtered through K2CO3, prior to workup and PTLC purification.
22. In an oven-dried 5 mL glass V-vial containing 2 mL 10:90 (v/v) H2O/CH3CN was
dissolved KF (ca. 50 mg), followed by an equimolar amount of KryptofixÒ 222.
The mixture was azeotropically dried at 100 °C by stepwise addition of
anhydrous CH3CN, under a stream of N2. Upon reaching dryness, N-protected
2-methylaziridine (0.2 equiv) in 2 mL of anhydrous DMSO was added and the
reaction was allowed to occur for 30 min at 90 °C. The reaction mixture was
then diluted with 30 mL H2O and extracted with 30 mL CH2Cl2. The aqueous
phase was washed with an additional 30 mL CH2Cl2, and the combined organic
layers were washed with 30 mL of a saturated sodium chloride solution, dried
over Na2SO4, filtered, and concentrated. The reaction mixture was purified by
PTLC (30/70 EtOAc/Hex (v/v)).
23. Alvernhe, G.; Lacombe, S.; Laurent, A. Tetrahedron Lett. 1980, 21, 289–292.
24. Wade, T. N. J. Org. Chem. 1980, 45, 5328–5333.
25. Vasdev, N.; Pointner, B. E.; Chirakal, R.; Schrobilgen, G. J. J. Am. Chem. Soc. 2002,
124, 12863–12868.
26. Winfield, J. M. J. Fluorine Chem. 1984, 25, 91–98.
Acknowledgements
27. Christe, K. O.; Wilson, W. W. J. Fluorine Chem. 1990, 47, 117–120.
28. Posakony, J. J.; Tewson, T. J. Synthesis 2002, 766–770.
The authors gratefully acknowledge the assistance of Armando
Garcia and Winston T. Stableford for production of [18F]-fluoride.
We also thank Dr. Iain D. G. Watson, Dr. Matthew D. Moran and
Dr. Alex Bain for helpful discussions. Financial support for this
work was provided by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC; Discovery Grants to M. G and
P. H.) and by both NSERC and the Canadian Institutes for Health Re-
search in the form of a Collaborative Health Research Projects
Grant to N.V. (CHRPJ 322787-06).
29. 1-fluoro-2-propanamine (HCOOH salt) in MeOD: 1H NMR (499.8 MHz) d ppm,
3
4
relative to TMS) D 1.380 (dd, JHH = 6.882 Hz, JHF = 1.262 Hz, 3H), C 3.674
3
3
(dddq, JHH = 3.189 Hz; 6.4 Hz; 6.882 Hz, JHF = 19.369 Hz; 1H), B 4.533 (ddd,
2JHH = À10.401 Hz, JHH = 6.416 Hz, JHF = 47.201 Hz, 1H),
A 4.696 (ddd,
3
2
2JHH = À10.401 Hz, JHH = 3.189 Hz, JHF = 46.7 Hz, 1H). 13C NMR (125.7 MHz)
3
2
1
2
d ppm, relative to TMS) 85.0 (d, JCF = 172 Hz), 48.9 (d, JCF = 19.7 Hz), 14.3 (d,
3JCF = 6.5 Hz). 19F NMR (470.3 MHz) d ppm, relative to ext. CFCl3): X À231.91
2
3
4
(m, JHF = 46.681 Hz; 47.201 Hz, JHF = 19.369 Hz, JHF = 1.262 Hz). (RMS
deviation = 0.016 Hz (0.000032 ppm), 191 transitions assigned).
Compound 5 in CDCl3: 1H NMR (299.9 MHz) d ppm, relative to TMS A 2.605 (dd,
3JHH = 6.266 Hz, JHF3 = 23.584 Hz, 3H), C 4.790 (E 4.907) (two sets of ddd,
3
2JHH = À14.193 Hz, JHH = 7.093 Hz, JHF = 18.116 Hz, 1H), D 4.895 (F 4.907)
3
2
3
3
(two sets of ddd, JHH = À14.193 Hz, JHH = 3.761 Hz, JHF = 26.177 Hz, 1H), B
3
2
6.121 (dddq, JHH = 3.761 Hz; 7.093 Hz; 6.266 Hz, JHF = 49.2 Hz; 1H), 8.70 (m,
2H), 8.76 (m, 1H), 9.21 (m, 2H). 13C NMR (75.4 MHz) d ppm, relative to TMS)
225.6, 186.9, 154.9, 151.3, 148.4, 148.0, 147.3, 109.3 (d, 1JCF = 167 Hz), 64.9 (d,
References and notes
1. Hu, X. E. Tetrahedron 2004, 60, 2701–2743.
2JCF = 22.8 Hz), 38.0 (d, JCF = 22.3 Hz). 19F NMR (282.2 MHz) d ppm, relative to
2
2. Ding, C.-H.; Dai, L.-X.; Hou, X.-L. Synlett 2004, 2218–2220.
3. Fan, R.-H.; Zhou, Y.-G.; Zhang, W.-X.; Hou, X.-L.; Dai, L.-X. J. Org. Chem. 2004, 69,
335–338.
4. Noritake, S.; Shibata, N.; Kawai, H.; Pandy, M. K.; Nakamura, S.; Toru, T.
Heterocycl. Commun. 2009, 15, 105–113.
2
3
ext. CFCl3):
X
À177.95 (m, JHF = 49.2 Hz, JHF = 18.2 Hz; 22.6 Hz; 26.1 Hz,
4JHF = 9.4 Hz). (RMS deviation = 0.019 Hz (0.000038 ppm), 381 transitions
assigned).