indole derivatives have been reported,10 only a few methods
are available for access to difluorinated indole deriva-
tives.11À13 In 1977, Hesse and co-workers reported the 2,3-
difluoroindolines from indole derivatives in moderate yields
by using the toxic gas CF3OF in Freon at À78 °C.11a
Recently, Fuchigami and co-workers11b reported the difluor-
ination of indole derivatives by using an electrolysis techni-
que with Et4NFÀ4HF as the fluorine sources, providing 2,
3-difluoroindolines in moderate yields. Middleton’s group11c
reported one case of 3,3-difluorooxindole from isatin by
using the nucleophilic fluorinating reagent DAST (Figure 1),
which was thermally unstable (it would fume in air and
reacted explosively on contact with water).11d Shreeve’s
group11e developed an analogue, bis(methoxyethyl)amino-
sulfur trifluoride (Deoxofluor) (Figure 1), with enhanced
thermal stability, to achieve higher yields of 3,3-difluoroox-
indoles from isatins by using an excess (3.0 equiv) of fluor-
inating reagent. Very recently, Umemoto et al.11f developed a
new fluorinating agent, 4-tert-butyl-2,6-dimethylphenylsul-
fur trifluoride (Fluolead) (Figure 1), which had high thermal
stability and unusual resistance to aqueous hydrolysis which
could also produce the 3,3-difluorooxindoles from electro-
philic isatins.
Figure 1. Fluorinating reagents.
Herein, we describe an efficient difluorohydroxylation
of readily available indoles to afford 3,3-difluoroindolin-
2-ols using an electrophilic fluorinating reagent. The sig-
nificance of the present method is twofold: (1) The electro-
philicfluorinating reagent Selectfluor14 (Figure 1), which is
safe, nontoxic, and easy to handle, was used as the
fluorinating reagent. (2) By using electrophilic fluorinating
reagent, the readily available indoles, which are natively
nucleophliles, could be directly fluorinated and a novel
difluorohydroxylated indoline structure was produced.
(10) For some examples, see: (a) Labroo, R. B.; Labroo, V. M.; King,
M. M.; Cohen, L. A. J. Org. Chem. 1991, 56, 3637. (b) Hou, Y.;
Higashiya, S.; Fuchigami, T. J. Org. Chem. 1997, 62, 8773. (c) Hayakawaa,
Y.; Singha, M.; Shibatab, N.; Takeuchib, Y.; Kirk, K. L. J. Fluorine Chem.
1999, 97, 161. (d) Takeuchi, Y.; Tarui, T.; Shibata, N. Org. Lett. 2000, 2,
639. (e) Shibata, N.; Suzuki, E.; Asahi, T.; Shiro, M. J. Am. Chem. Soc.
2001, 123, 7001. (f) Shibata, N.; Tarui, T.; Doi, Y.; Kirk, K. L. Angew.
Chem., Int. Ed. 2001, 40, 23. (g) Baudoux, J.; Salit, A.-F.; Cahard, D.;
Plaquevent, J.-C. Tetrahedron Lett. 2002, 43, 6573. (h) Jacquesy, J.-C.;
Berrier, C.; Jouannetaud, M.-P.; Zunino, F.; Fahy, J.; Duflos, A.; Ribet, J.-
P. J. Fluorine Chem. 2002, 114, 139. (i) Shibata, N.; Ishimaru, T.; Suzuki, E.;
Kirk, K. L. J. Org. Chem. 2003, 68, 2494. (j) Zoute, L.; Audouard, C.;
Plaquevent, J.-C.; Cahard, D. Org. Biomol. Chem. 2003, 1, 1833. (k)
Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura, Y.; Sodeoka, M. J.
Am. Chem. Soc. 2005, 127, 10164. (l) Shibata, N.; Kohno, J.; Takai, K.;
Ishimaru, T.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem., Int.
Ed. 2005, 44, 4204. (m) Ishimaru, T.; Shibata, N.; Horikawa, T.; Yasuda,
N.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed. 2008, 47,
4157. (n) Fujiwara, T.; Yin, B.; Jin, M.; Kirk, K. L.; Takeuchi, Y. J. Fluorine
Chem. 2008, 129, 829. (o) Baumann, M.; Baxendale, I. R.; Martin, L. J.;
Ley, S. V. Tetrahedron 2009, 65, 6611. (p) Fujiwara, T.; Seki, T.; Miura, M.;
Takeuchi, Y. Heterocycles 2009, 79, 427. (q) Seki, T.; Fujiwara, T.;
Takeuchi, Y. J. Fluorine Chem. 2011, 132, 181.
Figure 2. X-ray structure of 2a.
First, the reaction of 1-methyl-2-phenylindole (1a) was
investigated using the commercially available Selectfluor
as the electrophilic fluorinating reagent, which was widely
used for the fluorination of organic molecules.14 Interest-
ingly, 3,3-difluoro-1-methyl-2-phenylindolin-2-ol (2a) was
accidentally obtained instead of the anticipated C3 mono-
fluorinated indole. The structure of 2a was further con-
firmed by single-crystal X-ray analysis (Figure 2).
Subsequently, various parameters were screened to im-
prove the reaction efficiency (Table 1). The results indicate
that the choice of solvent, the amount of H2O, and the tem-
perature were important for optimizing the yield of 2a. The
reaction yield increased to 57% when MeCN was used as the
solvent (entry 2, Table 1). Considering that the hydroxyl
group in 2a was originated from H2O in air (entries 1À2), 1.0
equiv of H2O was added to the reaction system, which im-
proved the yield a little (entry 3). 2a was obtained in 81%
yield when the reaction was carried out at a lower tempera-
ture (0 °C, entry 6). The best result was obtained (85% yield)
when the reaction was performed under air at 0 °C with
(11) (a) Barton, D. H. R.; Hesse, R. H.; Jackman, G. P.; Pechet,
M. M. J. Chem. Soc., Perkin Trans. 1 1977, 2604. (b) Yin, B.; Wang, L.;
Inagi, S.; Fuchigami, T. Tetrahedron 2010, 66, 6820. (c) Middleton,
W. J.; Bingham, E. M. J. Org. Chem. 1980, 45, 2883. (d) Cochran, J.
Chem. Eng. News 1979, March 19, 4. (e) Singh, R. P.; Majumder, U.;
Shreeve, J. M. J. Org. Chem. 2001, 66, 6263. (f) Umemoto, T.; Singh,
R. P.; Xu, Y.; Saito, N. J. Am. Chem. Soc. 2010, 132, 18199.
(12) For other examples of using DAST for difluorination of isatins,
see: (a) Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Luo, Y.; Liu, X.; Shi, Y.;
Guan, R.; Magnone, S. R.; Klinghofer, V.; Johnson, E. F.; Bouska, J.;
Shoemaker, A.; Oleksijew, A.; Jarvis, K.; Park, C.; Jong, R. D.; Oltersdorf,
T.; Li, Q.; Rosenberg, S. H.; Giranda, V. L. Bioorg. Med. Chem. Lett. 2006,
16, 3424. (b) McAllister, L. A.; McCormick, R. A.; James, K. M.; Brand, S.;
Willetts, N.; Procter, D. J. Chem.;Eur. J. 2007, 13, 1032. (c) Podichetty,
€
A. K.; Faust, A.; Kopka, K.; Wagner, S.; Schober, O.; Schafers, M.; Haufe,
G. Bioorg. Med. Chem. 2009, 17, 2680. (d) Baumann, M.; Baxendale, I. R.;
Martin, L. J.; Ley, S. V. Tetrahedron 2009, 65, 6611. (e) Zhou, N.; Polozov,
A. M.; O’Connell, M.; Burgeson, J.; Yu, P.; Zeller, W.; Zhang, J.; Onua, E.;
Ramirez, J.; Palsdottir, G. A.; Halldorsdottir, G. V.; Andresson, T.;
Kiselyov, A. S.; Gurney, M.; Singh, J. Bioorg. Med. Chem. Lett. 2010, 20,
2658.
(13) For an example of producing 3,3-difluorooxindoles by a transi-
tion metal catalytic method, see: Zhu, J.; Zhang, W.; Zhang, L.; Liu, J.;
Zheng, J.; Hu, J. J. Org. Chem. 2010, 75, 5505.
(14) For reviews, see: (a) Singh, R. P.; Shreeve, J. M. Acc. Chem. Res.
ꢀ
S. P.; Wong, C.-H. Angew. Chem., Int. Ed. 2005, 44, 192.
2004, 37, 31. (b) Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent,
Org. Lett., Vol. 13, No. 17, 2011
4499