ORGANIC
LETTERS
2011
Vol. 13, No. 16
4394–4397
Palladium-Catalyzed Direct Cross-
Coupling Reaction of Glycals with
Activated Alkenes
Yaguang Bai, Jing Zeng, Shuting Cai, and Xue-Wei Liu*
School of Physical & Mathematical Sciences, Nanyang Technological University, 21
Nanyang Link, 637371 Singapore
Received June 28, 2011
ABSTRACT
An efficient method for a Pd(OAc)2-catalyzed cross-coupling reaction of glycals with activated alkenes under mild conditions has been developed.
This transformation provides an expedient synthetic method to C(2)-functionalized glycals, which are common structural building blocks in
natural products and other biologically active compounds. The reaction scope includes different kinds of carbohydrates, protecting groups and
substituents on alkene. Moderate to excellent yields and pure E configuration selectivity were obtained.
The utility of saturated and unsaturated pyrans has
increased enormously over the years; pyrans are also an
important class of heterocycle which are widely found in
natural products with various biological activities (Figure 1).1
Consequently, a plethora of methods has been developed for
the synthesis of multifunctionalized pyran rings. Popular
methods include the Prins cyclization,2 Lewis acid and transi-
tion metal promoted intramolecular cyclizations,3 and hetero-
DielsÀAlder reactions.4 Most of the reported methods focus
on cyclization reactions to form the pyran rings from mole-
cules with existing functional groups.4
Figure 1. Pyran-containing natural products.
€
(1) (a) Adio, A. M.; Konig, W. A. Phytochemistry 2005, 66, 599. (b)
Sugar pyranoses are one of the most abundant pyrans
that are fully substituted with specific chiral centers.
Among the many sugar pyranose derivatives, glycals are
preeminent. While in past decades, only reactions on the
anomeric carbon of glycals have been intensively
investigated;5 to the best of our knowledge, there are only
several reports of the addition of functional groups to C2
Banskota, A. H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K.; Kadota,
S. J. Nat. Prod. 2000, 63, 1227. (c) Supratman, U.; Fujita, T.; Akiyama,
K.; Hayashi, H. Phytochemistry 2001, 58, 311. (d) Valcic, S.; Zapp, J.;
Becker, H. Phytochemistry 1997, 44, 89.
(2) (a) Barry, C. S.; Bushby, N.; Harding, J. R.; Willis, C. L. Org.
Lett. 2005, 7, 2683. (b) Barry, C. S.; Elsworth, J. D.; Seden, P. T.;
Bushby, N.; Harding, J. R.; Alder, R. W.; Willis, C. L. Org. Lett. 2006, 8,
3319. (c) Hart, D. J.; Bennett, C. E. Org. Lett. 2003, 5, 1499. (d) Kwon,
M. S.; Woo, S. K.; Na, S. W.; Lee, E. Angew. Chem., Int. Ed. 2008, 47,
1733. (e) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2, 1217. (f)
Hu, X.-H.; Liu, F.; Loh, T.-P. Org. Lett. 2009, 11, 1741.
(3) (a) Baeckvall, J. E.; Andersson, P. G. J. Am. Chem. Soc. 1992, 114,
6374. (b) Coppi, L.; Ricci, A.; Taddei, M. Tetrahedron Lett. 1987, 28,
973. (c) Coppi, L.; Ricci, A.; Taddei, M. J. Org. Chem. 1988, 53, 911. (d)
Huang, H.-L.; Liu, R.-S. J. Org. Chem. 2002, 68, 805.
(5) (a) Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357. (b)
Dwek, R. A. Chem. Rev. 1996, 96, 683. (c) Toshima, K.; Tatsuta, K.
Chem. Rev. 1993, 93, 1503. (d) Varki, A. Glycobiology 1993, 3, 97. (e)
Davis, B. G. J. Chem. Soc., Perkin Trans. 1 2000, 2137.
(4) (a) Chemler, S. R.; Iserloh, U.; Danishefsky, S. J. Org. Lett. 2001,
3, 2949. (b) Yao, S.; Johannsen, M.; Audrain, H.; Hazell, R. G.;
Jørgensen, K. A. J. Am. Chem. Soc. 1998, 120, 8599.
(6) (a) Mamat, C.; Hein, M.; Miethchen, R. Carbohydr. Res. 2006,
341, 1758. (b) Priebe, W.; Grynkiewicz, G.; Neamati, N. Tetrahedron
Lett. 1992, 33, 7681.
r
10.1021/ol201734w
Published on Web 07/27/2011
2011 American Chemical Society