specific noncompetitive inhibitor of R-D-glucosidases4
and an equally potent competitive inhibitor of an R-L-
arabinofuranosidase.5 The D-iminoxylitol 2D, isolated
from Angylocalyx pynaertii, shows no significant glycosi-
dase inhibition;6 there are many syntheses of both xylitol
enantiomers 2D and 2L.7 Because of the biological proper-
ties of iminosugars and their promise as chemotherapeutic
agents,8 many pyrrolidine, piperidine, and azepane carbo-
hydrate mimics have been studied. In contrast, there are
few examples of carbohydrate azetidines;9 there is only one
report of any glycosidase inhibition studies on azetidines in
which 1,3-dideoxy-1,3-imino-L-xylitol 4L [Scheme 2] was
shown to be a specific inhibitor of amyloglucosidases.10
similarsequenceon protectedderivativesofD- and L-ribose
gavethe L-iminoxylitol azetidine4Land itsenantiomer4D,
respectively.
Scheme 2. Strategy for the Formation of Azetidines from Pro-
tected Pentoses
Scheme 1. Azetidine and Pyrrolidine Iminosugars
For the synthesis of azet-DAB 3D, D-arabinose was
converted to the diol 5D11 in three steps in an overall yield
of 33% as previously described [Scheme 3].12 Esterification
of 5D with triflic anhydride in dichloromethane in the
presence of pyridine gave the stable crystalline ditriflate 6D
25
[mp 67ꢀ68 ꢀC; [R]D þ7.2 (c 1.1, CHCl3)] in 95% yield.
Reaction of 6D with benzylamine in acetonitrile in the
presence of diisopropylethylamine (DIPEA) afforded the
25
azetidine 7Da [mp 60ꢀ63 ꢀC; [R]D ꢀ74.6 (c 1.0, CHCl3)]
in 86% yield. On selective triflation at the primary alcohol,
an oxetane cannot be formed as it would be trans-fused to
the THF ring. Successful cyclizations of ditriflates by
double displacements by amines have been reported
for the formation of azetidine,13 pyrrolidine,14 and
piperidine15 rings. Removal of the acetonide protecting
group in 7Da with aqueous trifluoroacetic acid gave the
lactol which on reduction by sodium borohydride gave the
This paper reports the syntheses of both enantiomers of
the azetidine analogues 3 and 4 of the arabinose 1 and
xylose 2 pyrrolidines. Formation of the azetidine ring by
nucleophilic displacement by nitrogen of triflate leaving
groups at C5 and C3 (with inversion) of a protected D-
arabinose gave azet-DAB 3D, whereas a corresponding
derivative of L-arabinose gave azet-LAB 3L [Scheme 2]. A
25
azetidine triol 8Da [mp 96ꢀ97 ꢀC; [R]D ꢀ66.2 (c 0.39
(4) (a) Fleet, G. W. J.; Nicholas, S. J.; Smith, P. W.; Evans, S. V.;
Fellows, L. E.; Nash, R. J. Tetrahedron Lett. 1985, 26, 3127–3130.
(b) Scofield, A. M.; Fellows, L. E.; Nash, R. J.; Fleet, G. W. J. Life Sci.
1986, 39, 645–650. (c) Fleet, G. W. J.; Smith, P. W. Tetrahedron 1986, 42,
5685–5692. (d) Behling, J. R.; Campbell, A. L.; Babiak, K. A.; Ng, J. S.;
Medich, J.; Farid, P.; Fleet, G. W. J. Tetrahedron 1993, 49, 3359–3366.
(e) da Cruz, F. P.; Newberry, S.; Jenkinson, S. F.; Wormald, M. R.;
Butters, T. D.; Alonzi, D. S.; Nakagawa, S.; Becq, F.; Norez, C.; Nash,
R. J.; Kato, A.; Fleet, G. W. J. Tetrahedron Lett. 2011, 52, 219–223.
(5) Axamawaty, M. T. H.; Fleet, G. W. J.; Hannah, K. A.; Namgoong,
S. K.; Sinnott, M. L. Biochem. J. 1990, 266, 245–249.
(6) Asano, N.; Yasuda, K.; Kizu, H.; Kato, A.; Fan, J.-Q.; Nash,
R. J.; Fleet, G. W. J.; Molyneux, R. J. Eur. J. Biochem. 2001, 268, 35–41.
(7) (a) Wang, C. C.; Luo, S. Y.; Shie, C. R.; Hung, S. C. Org. Lett.
2002, 4, 847–849. (b) Doddi, V. R.; Kokatla, H. P.; Pal, A. P. J.; Basak,
R. K.; Vankar, Y. D. Eur. J. Org. Chem. 2008, 5731–5739. (c) Aravind,
A.; Sankar, M. G.; Varghese, B.; Baskaran, S. J. Org. Chem. 2009, 74,
2858–2861. (d) Wang, G. N.; Yang, L.; Zhang, L. H.; Ye, X. S. J. Org.
Chem. 2011, 76, 2001–2009. (e) Buchanan, J. G.; Lumbard, K. W.;
Sturgeon, R. J.; Thompson, D. K.; Wightman, R. H. J. Chem. Soc.,
Perkin Trans. 1 1990, 699–706.
in H2O)]. Hydrogenolysis of the benzyl group in 8Da
with 10% Pd/C and ammonium formate in anhydrous
methanol16 gave the parent azet-DAB 3D17 [for the HCl
25
salt [R]D ꢀ32.4 (c 0.37 in H2O)] in 99% yield. A similar
sequence of reactions on the enantiomeric diol 5L derived
(11) (a) White, J. D.; Jensen, M. S. J. Am. Chem. Soc. 1995, 117,
6224–6233. (b) Vazquez-Tato, M. P.; Seijas, J. A.; Fleet, G. W. J.;
Mathews, C. J.; Hemmings, P. R.; Brown, D. Tetrahedron 1995, 51, 959–
974. (c) Martin, O. R.; Rao, S. P.; El-Shenawy, H. E.; Kurz, K. G.;
Cutler, A. B. J. Org. Chem. 1988, 53, 3287–3292.
(12) Full experimental details of synthetic procedures are given in the
Supporting Information.
(13) Brando, A.; Cicchi, S.; Cordero, F. M. Chem. Rev. 2008, 108,
3988–4035.
(14) (a) Shing, T. K. M. J. Chem. Soc., Chem. Commun. 1987, 262–
263. (b) Shing, T. K. M. Tetrahedron 1988, 7261–7264.
(8) (a) Horne, G.; Wilson, F. X. Prog. Med. Chem. 2011, 50, 135–176.
(b) Winchester, B. G. Tetrahedron: Asymmetry 2009, 20, 645–651.
(c) Alonzi., D. S.; Butters, T. D. Chimia 2011, 65, 35–39.
(15) Best, D.; Chairatana, P.; Glawar, A. F. G.; Crabtree, E.; Butters,
T. D.; Wilson, F. X.; Yu, C.-Y.; Wang, W.-B; Jia, Y.-M.; Adachi, I.;
Kato, A.; Fleet, G. W. J. Tetrahedron Lett. 2010, 51, 2222–2224.
(16) Ram, S.; Spicer, L. D. Synth. Commun. 1987, 17, 415–418.
(17) Selected data for azet-DAB 3D [as the HCl salt]: δH (D2O, 500
MHz): 3.70ꢀ3.73 (1H, dd, H5, J5,4 5.0 Hz, Jgem 12.0 Hz), 3.73ꢀ3.76 (1H,
(9) (a) Michaud, T.; Chanet-Ray, J.; Chou, S.; Gelas, J. Carbohydr.
Res. 1997, 299, 253–269. (b) Michaud, T.; Chanet-Ray, J.; Chou, S.;
Gelas, J. Carbohydr. Res. 1997, 303, 123–127. (c) Soengas, R. G.; Segade,
dd, H50, J5 ,4 5.4 Hz, Jgem 12.0 Hz), 3.87ꢀ3.90 (1H, dd, H1, J1,2 4.4 Hz,
ꢀ
Y.; Jimenez, C.; Rodrı
´
guez, J. Tetrahedron 2011, 67, 2617–2622.
0
(d) Dekaris, V.; Reissig, H. U. Synlett 2010, 1882–1882. (e) Eniade,
A.; Martin, O. R. Carbohydr. Res. 2002, 337, 273–277.
0
Jgem 11.6 Hz), 4.28ꢀ4.31 (1H, a-dt, H4, J4,5/J4,5 5.2 Hz, J4,3 7.2 Hz),
4.34ꢀ4.37 (1H, dd, H10, J1 ,2 6.8 Hz, Jgem 11.6 Hz), 4.58ꢀ4.61 (1H, a-t,
0
€
€
(10) Kramer, B.; Franz, T.; Picasso, S.; Pruschek, P.; Jager, V. Synlett
J3,4/J3,2 6.9 Hz), 4.81ꢀ4.85 (1H, m, H2); δC (D2O, 125 MHz): 53.9 (C1),
1997, 295–297.
62.5 (C5), 65.1 (C2), 65.4 (C3), 68.3 (C4).
Org. Lett., Vol. 13, No. 21, 2011
5835