LETTER
Synthesis of 1H-Pyrazolo[1,5-b]indazoles
2851
COR2
COR1
COR2
It is noteworthy that Smalley et al. have reported the syn-
thesis of quinolines 11 from the normal tandem Stauding-
er–aza-Wittig reaction of some azides 5 with triethyl
phosphite (Scheme 4).14 However, in our laboratory,
when some azides 5 were reacted with triethyl phosphite
at room temperature for two hours and then at refluxing
temperature for three to four hours, only 1H-pyrazolo[1,5-
b]indazoles 9 were obtained with no quinolines 11 forma-
tion.
Ph3P
COR1
N
N3
N
N
PPh3
5
6
O
O
R1
R1
O
R2
R2
–
H
O
+
In conclusion, we have developed an efficient one-pot
synthesis of 1H-pyrazolo[1,5-b]indazoles by a domino
Staudinger–aza-Wittig reaction. The mild reaction condi-
tions and the easy availability of the starting materials
make this method a valuable tool for generating 1H-pyr-
azolo[1,5-b]indazoles, which are of considerable interest
as potential biological active compounds or pharmaceuti-
cals.
N
N=PPh3
N
N=PPh3
N
N
7
O
O
R2
R2
R1
NH
R1
N
N
N
N
N
9
8
Acknowledgment
Scheme 3 Synthesis of the 1H-pyrazolo[1,5-b]indazoles 9 by
domino Staudinger–aza-Wittig reaction
We gratefully acknowledge financial support of this work by the
National Natural Science Foundation of China (No. 21032001,
21172085) and the self-determined research funds of CCNU from
the colleges’ basic research and operation of MOE (No.
CCNU11C01002).
Table 1 Preparation of Compounds 9a–l from Azides 5a–l
Entry
Product 9 R1
R2
Yield (%)a
Supporting Information for this article is available online at
1
2
9a
9b
9c
9d
9e
9f
Me
OEt
90
85
82
85
82
87
81
84
87
81
83
78
r
t
iornat
Me
Me
References and Notes
3
Me
PhNH
(1) (a) Tietze, L. F. Chem. Rev. 1996, 96, 115. (b) Tietze, L. F.;
Brasche, G.; Gericke, K. M. Domino Reactions in Organic
Synthesis; Wiley-VCH: Weinheim, 2006.
(2) Rodgers, J. D.; Johnson, B. L.; Wang, H.; Greenberg, R. A.;
Erickson Viitanen, S.; Klabe, R. M.; Cordova, B. C.; Rayner,
M. M.; Lam, G. N.; Chang, C.-H. Bioorg. Med. Chem. Lett.
1996, 6, 2919.
(3) Lee, F.-Y.; Lien, J.-C.; Huang, L.-J.; Huang, T.-M.; Tsai, S.-
C.; Teng, C.-M.; Wu, C.-C.; Cheng, F. C.; Kuo, S.-C.
J. Med. Chem. 2001, 44, 3746.
(4) Yakaiah, T.; Lingaiah, B. P. V.; Narsaiah, B.; Shireesha, B.;
Kumar, B. A.; Gururaj, S.; Parthasarathy, T.; Sridhar, B.
Bioorg. Med. Chem. Lett. 2007, 17, 3445.
(5) Yakaiah, T.; Lingaiah, B. P. V.; Narsaiah, B.; Kumar, K. P.;
Murthy, U. S. N. Eur. J. Med. Chem. 2008, 341.
(6) Minu, M.; Thangadurai, A.; Wakode, S. R.; Agrawal, S. S.;
Narasimhan, B. Bioorg. Med. Chem. Lett. 2009, 19, 2960.
(7) Park, J. S.; Yu, K. A.; Yoon, Y. S.; Han, M. R.; Kang, T. H.;
Kim, S.; Kim, N. J.; Yun, H.; Suh, Y. G. Drugs Future 2007,
32, 121.
4
Ph
OEt
5
Me
4-MeC6H4NH
4-ClC6H4NH
3-ClC6H4NH
2-MeC6H4NH
n-PrNH
N(CH2)5
Ph
6
Me
7
9g
9h
9i
Me
8
Me
9
Me
10
11
12
9j
Me
9k
9l
Ph
4-O2NC6H4
OEt
a Yields based on azides 5.
COR2
COR2
(8) Park, J. S.; Yu, K. A.; Kang, T. H.; Kim, S.; Suh, Y. G.
Bioorg. Med. Chem. Lett. 2007, 17, 3486.
P(OEt)3
COR1
COR1
N=P(OEt)3
(9) (a) Naganaboina, V. K.; Chandra, K. L.; Desper, J.; Rayat, S.
Org. Lett. 2011, 13, 3718. (b) Kshirsagar, U. A.; Puranik, V.
G.; Argade, N. P. J. Org. Chem. 2010, 75, 2702. (c) Palacios,
F.; Alonso, C.; Aparicio, D.; Rubiales, G.; Santos, J. M.
Tetrahedron 2007, 63, 523. (d) Alajarin, M.; Bonillo, B.;
Ortin, M.-M.; Sanchez-Andrada, P.; Vidal, A.; Orenes, R.-
A. Org. Biomol. Chem. 2010, 8, 4690. (e) Devarie-Baez, N.
O.; Xian, M. Org. Lett. 2010, 12, 752.
N3
10
5
COR2
N
R1
11
(10) Molina, P.; Conesa, C.; Alías, A.; Arques, A.; Velasco, M.
D. Tetrahedron 1993, 49, 7599.
Scheme 4 Literature preparation of quinolines 11 from azides 5
© Georg Thieme Verlag Stuttgart · New York
Synlett 2012, 23, 2850–2852