662 Bioconjugate Chem., Vol. 21, No. 4, 2010
van der Vlies et al.
(10) McKeever, U., Barman, S., Hao, T., Chambers, P., Song, S.,
Lunsford, L., Hsu, Y. Y., Roy, K., and Hedley, M. L. (2002)
Protective immune responses elicited in mice by immunization
with formulations of poly(lactide-co-glycolide) microparticles.
Vaccine 20, 1524–1531.
(11) Jiang, W., Gupta, R. K., Deshpande, M. C., and Schwendeman,
S. P. (2005) Biodegradable poly(lactic-co-glycolic acid) micro-
particles for injectable delivery of vaccine antigens. AdV. Drug
DeliVery ReV. 57, 391–410.
(12) Bennewitz, N. L., and Babensee, J. E. (2005) The effect of
the physical form of poly(lactic-co-glycolic acid) carriers on the
humoral immune response to co-delivered antigen. Biomaterials
26, 2991–2999.
(13) De Koker, S., Naessens, T., De Geest, B. G., Bogaert, P.,
Demeester, J., De Smedt, S., and Grooten, J. (2010) Biodegrad-
able polyelectrolyte microcapsules: antigen delivery tools with
Th17 skewing activity after pulmonary delivery. J. Immunol. 184,
203–211.
no free OVA was present is clearly illustrated in Figure 6B by
elution nonreduced OVA, which elutes at a much higher elution
volume and shows the need for reducing OVA prior to
conjugation. Indeed, if conjugation of reduced OVA is not
quantitative, the elution profile shows both peaks (data not
shown).
To conclude, we have presented a scheme by which to make
thiol-reactive Pluronic-stabilized poly(propylene sulfide) NPs
by incorporating a carboxylate-Pluronic into the hydroxyl-
Pluronic/propylene sulfide mixture that was subsequently reacted
with pyridyl disulfide cysteamine to yield pyridyl disulfide-NPs.
The polymerization and NP composition were not affected by
the presence of the carboxylate-Pluronic, and the number of
pyridyl disulfide groups on the NP surface could be controlled
by changing the weight ratio of carboxylate-Pluronic to hy-
droxyl-Pluronic in the mixture. We further showed that we could
conjugate biotin, a nine amino acid peptide, as well as the larger
protein OVA. Currently we are exploring the functionalizable
NPs scheme for immunological application by conjugating
antigenic peptides, proteins, and protein structures with adjuvant
activity.
(14) Reddy, S. T., Rehor, A., Schmoekel, H. G., Hubbell, J. A.,
and Swartz, M. A. (2006) In vivo targeting of dendritic cells in
lymph nodes with poly(propylene sulfide) nanoparticles. J.
Controlled Release 112, 26–34.
(15) Rehor, A., Tirelli, N., and Hubbell, J. A. (2002) A new living
emulsion polymerization mechanism: episulfide anionic polym-
erization. Macromolecules 35, 8688–8693.
(16) Rehor, A., Hubbell, J. A., and Tirelli, N. (2004) Oxidation-
sensitive polymeric nanoparticles. Langmuir 21, 411–417.
(17) Rehor, A., Botterhuis, N. E., Hubbell, J. A., Sommerdijk, N.,
and Tirelli, N. (2005) Glucose sensitivity through oxidation
responsiveness. An example of cascade-responsive nano-sensors.
J. Mater. Chem. 15, 4006–4009.
ACKNOWLEDGMENT
We thank the Competence Centre for Materials Science and
Technology (CCMX) of the ETH-Board Switzerland for partial
funding of this research.
(18) Reddy, S. T., van der Vlies, A. J., Simeoni, E., Angeli, V.,
Randolph, G. J., O’Neil, C. P., Lee, L. K., Swartz, M. A., and
Hubbell, J. A. (2007) Exploiting lymphatic transport and
complement activation in nanoparticle vaccines. Nat. Biotechnol.
25, 1159–1164.
(19) Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem.
Biophys. 82, 70–77.
Supporting Information Available: Calculation of NP
composition, NMR spectra of 6 and pyridyl disulfide-NP, and
estimation of numbers of biotin, peptide, and OVA molecules
per NP. This material is available free of charge via the Internet
(20) Udenfriend, S., Stein, S., Bohlen, P., Dairman, W., Leimgru-
ber, W., and Weigele, M. (1972) Fluorescamine: a reagent for
assay of amino acids, peptides, proteins, and primary amines in
the picomole range. Science 178, 871–872.
(21) O’Neil, C. P., van der Vlies, A. J., Velluto, D., Wandrey, C.,
Demurtas, D., Dubochet, J., and Hubbell, J. A. (2009) Extra-
cellular matrix binding mixed micelles for drug delivery ap-
plications. J. Controlled Release 137, 146–151.
(22) Green, N. M. (1970) Spectrophotometric determination of
avidin and biotin. Methods Enzymol. 18 (Part 1), 418–424.
(23) Dust, J. M., Fang, Z. H., and Harris, J. M. (2002) Proton NMR
characterization of poly(ethylene glycols) and derivatives. Mac-
romolecules 23, 3742–3746.
(24) Rothenfluh, D. A., Bermudez, H., O’Neil, C. P., and Hubbell,
J. A. (2008) Biofunctional polymer nanoparticles for intra-
articular targeting and retention in cartilage. Nat. Mater. 7, 248–
254.
(25) Tatsumi, E., and Hirose, M. (1997) Highly ordered molten
globule-like state of ovalbumin at acidic pH: native-like frag-
mentation by protease and selective modification of Cys367 with
dithiodipyridine. J. Biochem. 122, 300–308.
(26) Verwey, E. J. W., Overbeek, J. T. G. (1948) Theory of the
Stability of Lyophobic Colloids Elsevier, New York.
(27) Burgdorf, S., Kautz, A., Bohnert, V., Knolle, P. A., and Kurts,
C. (2007) Distinct pathways of antigen uptake and intracellular
routing in CD4 and CD8 T cell activation. Science 316, 612–
616.
LITERATURE CITED
(1) Nestle, F. O., Banchereau, J., and Hart, D. (2001) Dendritic
cells: on the move from bench to bedside. Nat. Med. 7, 761–
765.
(2) Banchereau, J., and Steinman, R. M. (1998) Dendritic cells and
the control of immunity. Nature 392, 245–252.
(3) Randolph, G. J., Angeli, V., and Swartz, M. A. (2005) Dendritic-
cell trafficking to lymph nodes through lymphatic vessels. Nat.
ReV. Immunol. 5, 617–628.
(4) Gay, N. J., Gangloff, M., and Weber, A. N. R. (2006) Toll-
like receptors as molecular switches. Nat. ReV. Immunol. 6, 693–
698.
(5) Hubbell, J. A., Thomas, S. N., and Swartz, M. A. (2009)
Materials engineering for immunomodulation. Nature 462, 449–
460.
(6) Singh, M., Briones, M., Ott, G., and O’Hagan, D. (2000)
Cationic microparticles: a potent delivery system for DNA
vaccines. Proc. Natl. Acad. Sci. U.S.A. 97, 811–816.
(7) Newman, K. D., Samuel, J., and Kwon, G. (1998) Ovalbumin
peptide encapsulated in poly(D,L lactic-co-glycolic acid) micro-
spheres is capable of inducing a T helper type 1 immune
response. J. Controlled Release 54, 49–59.
(8) Newman, K. D., Sosnowski, D. L., Kwon, G. S., and Samuel,
J. (1998) Delivery of MUC1 mucin peptide by poly(D,L-lactic-
co-glycolic acid) microspheres induces type 1 T helper immune
responses. J. Pharm. Sci. 87, 1421–1427.
(9) Newman, K. D., Elamanchili, P., Kwon, G. S., and, and Samuel,
J. (2002) Uptake of poly(D,L-lactic-co-glycolic acid) microspheres
by antigen-presenting cells in vivo. J. Biomed. Mater. Res. 60,
480–486.
(28) Takahashi, N., and Hirose, M. (1990) Determination of
sulfhydryl groups and disulfide bonds in a protein by polyacry-
lamide gel electrophoresis. Anal. Biochem. 188, 359–365.
BC9004443