High Thermal Conductivity Silicon Nitride Ceramic
2. G.A. Slack, R.A. Tanzilli, R.O. Pohl, and J.W.
Vandersande, J. Phys. Chem. Solids 48 (1987)
p. 641.
3. E. Tani, S. Umebayashi, K. Kishi, K. Kobayashi,
and M. Nishijima, Am. Ceram. Soc. Bull. 65
(1986) p. 1311.
4. C.W. Li and J. Yamanis, Ceram. Eng. Sci. Proc.
10 (1989) p. 632.
5. P.F. Becher, J. Am. Ceram. Soc. 74 (1991) p. 255.
6. K. Hirao, K. Watari, M.E. Brito, M. Toriyama,
and S. Kanzaki, J. Am. Ceram. Soc. 79 (1996)
p. 2485.
7. N. Hirosaki, Y. Okamoto, M. Ando, F.
Munakata, and Y. Akimune, J. Am. Ceram. Soc.
79 (1996) p. 2878.
8. K. Watari, K. Hirao, M. Toriyama, and K.
Ishizaki, J. Am. Ceram. Soc. 82 (1999) p. 777.
9. N. Hirosaki, Y. Okamoto, F. Munakata, and
Y. Akimune, J. Eur. Ceram. Soc. 19 (1999) p. 2183.
10. J.S. Haggerty and A. Lightfoot, Ceram. Eng.
Sci. Proc. 16 (1995) p. 475.
21. M. Kitayama, K. Hirao, A. Tsuge, M.
Toriyama, and S. Kanzaki, J. Am. Ceram. Soc. 82
(1999) p. 3263.
22. M. Kitayama, K. Hirao, A. Tsuge, K. Watari,
M. Toriyama, and S. Kanzaki, J. Am. Ceram. Soc.
83 (2000) p. 1985.
23. M. Kitayama, K. Hirao, K. Watari, M.
Toriyama, and S. Kanzaki, J. Am. Ceram. Soc. 84
(2001) p. 353.
24. H. Hayashi, M. Kitayama, K. Hirao, Y.
Yamauchi, and S. Kanzaki, submitted to J. Am.
Ceram. Soc.
25. W.D. Kingery, J. Am. Ceram. Soc. 42 (1959)
p. 617.
26. H. Buhr and G. Müller, J. Eur. Ceram. Soc. 12
(1993) p. 271.
27. W.-J. Kim, D.K. Kim, and C.H. Kim, J. Am.
Ceram. Soc. 79 (1996) p. 1066.
28. H.-J. Kleebe, M.K. Cinibulk, R.M. Cannon,
and M. Rühle, J. Am. Ceram. Soc. 76 (1993) p. 1969.
29. O. Wiener, Phys. Z. 5 (1904) p. 332.
30. M. Kitayama, K. Hirao, K. Watari, M.
Toriyama, and S. Kanzaki, J. Am. Ceram. Soc. 82
(1999) p. 3105.
31. B. Li, L. Pottier, J.P. Roger, D. Fournier, K.
Watari, and K. Hirao, J. Eur. Ceram. Soc. 19
(1999) p. 1631.
32. K. Hirao, M. Ohashi, M.E. Brito, and S.
Kanzaki, J. Am. Ceram. Soc. 78 (1995) p. 1687.
33. K. Watari, K. Hirao, M.E. Brito, M. Toriyama,
and S. Kanzaki, J. Mater. Res. 14 (1999) p. 1538.
34. N. Hirosaki, M. Ando, Y. Okamoto, F.
Munakata, Y. Akimune, K. Hirao, K. Watari,
M.E. Brito, M. Toriyama, and S. Kanzaki,
J. Ceram. Soc. Jpn. 104 (1996) p. 1171.
35. H. Teshima, K. Hirao, M. Toriyama, and
S. Kanzaki, J. Ceram. Soc. Jpn. 107 (1999) p. 1216.
36. G. Petzow and M.J. Hoffmann, Mater. Sci.
Forum 113–115 (1993) p. 91.
Summary
The thermal conductivity of Si3N4 ceramic
at room temperature is basically governed
by the lattice oxygen content in the ꢁ-Si3N4
crystal. Therefore, in order to improve
thermal conductivity, it is important to pu-
rify the grains, as has been demonstrated
in AlN ceramic. The purification of ꢁ-Si3N4
grains can be achieved through a solution
re-precipitation reaction during sintering
using sintering additives that have a great
affinity for SiO2, such as Y2O3 and Yb2O3.
As far as the authors know, Si3N4 ceramic
with a high thermal conductivity of over
100 W mꢀ1 Kꢀ1 has been fabricated only by
gas-pressure sintering. From a commercial
point of view, it is very important to fabri-
cate high thermal conductivity Si3N4 ce-
ramic by a conventional sintering technique
such as pressureless sintering. Seeding,
combined with careful control of grain-
boundary composition, may be one of the
processing strategies for this purpose. In
addition, microstructure design for har-
monizing high thermal conductivity with
good mechanical and electrical properties
(such as low dielectric constant) is also
very important for the widespread use of
Si3N4 ceramic as a high thermal conduc-
tivity material.
11. S. Prochazka and R.J. Charles, Am. Ceram.
Soc. Bull. 52 (1973) p. 885.
12. Y. Takeda, K. Usami, K. Nakamura, S.
Ogihara, K. Maeda, T. Miyoshi, S. Shinozaki,
and M. Ura, Advances in Ceramics, Vol. 7, edited
by M.F. Yan and A.H. Heuer (American Ce-
ramic Society, Columbus, OH, 1984) p. 253.
13. N.P. Padture, J. Am. Ceram. Soc. 77 (1994)
p. 519.
14. F.F. Lange, J. Am. Ceram. Soc. 62 (1979)
p. 428.
15. C.M. Hwang, T.Y. Tien, and I.-W. Chen,
in Proc. Sintering ‘87, edited by S. Somiya,
M. Shimada, M. Yoshimura, and R. Watanabe
(Elsevier Applied Science Publishers, Essex,
1988) p. 1034.
16. A.V. Virkar, T.B. Jackson, and R.A. Cutler,
J. Am. Ceram. Soc. 72 (1989) p. 2031.
17. R.R. Lee, J. Am. Ceram. Soc. 74 (1991) p. 2242.
18. T.B. Jackson, A.V. Virl, K.L. More, R.B.
Dinwiddie Jr., and R.A. Cutler, J. Am. Ceram.
Soc. 80 (1997) p. 1421.
19. K. Watari, H.J. Hwang, M. Toriyama, and
S. Kanzaki, J. Mater. Res. 14 (1999) p. 1409.
20. K. Watari, Y. Seki, and K. Ishizaki, J. Ceram.
Soc. Jpn. 97 (1989) p. 56.
Acknowledgments
The authors gratefully acknowledge
helpful discussions with Drs. S. Kanzaki,
M. Toriyama (National Institute of Ad-
vanced Industrial Science and Technology),
and K. Maeda (Fine Ceramics Research
Association).
37. W. Dressler, H.-J. Kleebe, M.J. Hoffmann,
M. Rühle, and G. Petzow, J. Eur. Ceram. Soc. 16
(1996) p. 3.
38. H. Emoto and M. Mitomo, J. Eur. Ceram.
Soc. 17 (1997) p. 797.
References
39. H. Buhr, G. Müller, H. Wiggers, F. Aldinger,
P. Foley, and A. Roosen, J. Am. Ceram. Soc. 74
1. G.A. Slack, J. Phys. Chem. Solids 34 (1973)
p. 321.
(1991) p. 718.
ꢀ
Announcing...
Nonmembers and institutions may now purchase individual MRS proceedings articles
Thousands of papers will be available in the weeks to come.
Of course, MRS members continue to have free access to these papers
as part of their membership dues. To apply for membership,
Or contact:
Member Services, Materials Research Society
506 Keystone Drive, Warrendale, PA 15086 USA
Tel: 724-779-3003 • Fax: 724-779-8313 • E-mail: info@mrs.org
ꢀ
MRS BULLETIN/JUNE 2001
455