B. Devi Bala et al. / Tetrahedron Letters 52 (2011) 4562–4566
4565
14. Boger, D. L.; Hong, J.; Hikota, M.; Ishida, M. J. Am. Chem. Soc. 1999, 121, 2471–
2477.
15. Soonthornchareonnon, N.; Suwanborirux, K.; Bavovada, R.; Patarapanich, C.;
Cassady, J. M. J. Nat. Prod. 1999, 62, 1390–1394.
16. (a) Chigr, M.; Fillion, H.; Rougny, A. Terahedron Lett. 1988, 29, 5913–5916; (b)
Echavarren, A. M. J. Org. Chem. 1990, 55, 4255–4260; (c) Nebois, P.; Barret, R.;
Fillion, H. Tetrahedron Lett. 1990, 31, 2569–2572; (d) Nicolaides, D. N.; Awad, R.
W.; Papageorgiou, G. K.; Stephanidou-Stephanatou, J. J. Org. Chem. 1994, 59,
1083–1086.
17. (a) Krapcho, A. P.; Gallagher, C. E.; Mammach, A.; Ellis, M.; Menta, E.; Oliva, A. J.
Heterocycl. Chem. 1997, 34, 27–32; (b) Meghani, P.; Mills, O. S.; Joule, J. A.
Heterocycles 1990, 30, 1121–1129.
is depicted in Scheme 2. Presumably, the intermediate, 3-[1-aryl-
methylidene]-1,2,3,4-tetrahydro-1,2,4-naphthalenetriones (9),
could arise via (i) the Mannich reaction of 2-hydroxy-1,4-naphtho-
quinone (1) with an iminium ion 5 generated from 2 and ammonium
acetate, followed by elimination of ammonia, or (ii) the ammonium
acetate-catalyzed reaction of 1 with aldehyde to afford aldol 8,
which could undergo dehydration. Michael addition of enamine 6,
generated from the reaction of b-ketoester with ammonia, available
from the dissociation of ammonium acetate, to 9, followed by regio-
selective intramolecular condensation affords solely 4 (Scheme 2).
The regioisomer 40 is not formed even in traces in this reaction. This
is presumably due to the higher electrophilicity of the carbonyl at
non-conjugating 3-position in intermediate 11 than the carbonyl
at conjugating 1-position.
In conclusion, we have described an expedient and convergent
four-component domino protocol for the regioselective synthesis
of a library of tetrahydrobenzo[g]quinolines in excellent yields
from readily available simple starting materials. The quinolinedi-
ones obtained in this study could also serve as valuable synthons
for further elaboration into more complex heterocycles of biologi-
cal relevance.
18. Berghot, M. A. Chem. Pap. 2002, 56, 202–207.
19. Cuerva, J. M.; Cárdenas, D. J.; Echavarren, A. M. Chem. Comm. 1999, 17, 1721–
1722.
20. (a) Prasanna, P.; Balamurugan, K.; Perumal, S.; Menéndez, J. C. Green Chem.,
Menéndez, J. C. Tetrahedron 2011, 67, 1432–1437; (c) Suresh Kumar, R.; Osman,
H.; Perumal, S.; Menéndez, J. C.; Ashraf Ali, M.; Ismail, R.; Soo Choon, T.
Tetrahedron 2011, 67, 3132–3139; (d) Balamurugan, K.; Perumal, S.; Menéndez,
J. C. Tetrahedron 2011, 67, 3201–3208; (e) Indumathi, S.; Perumal, S.;
Menéndez, J. C. J. Org. Chem. 2010, 75, 472–475; (f) Balamurugan, K.;
Perumal, S.; Kumar Reddy, A. S.; Yogeeswari, P.; Sriram, D. Tetrahedron Lett.
2009, 50, 6191–6195; (g) Indumathi, S.; Ranjith Kumar, R.; Perumal, S.
Tetrahedron 2007, 63, 1411–1416; (h) Srinivasan, M.; Perumal, S. Tetrahedron
2007, 63, 2865–2874; (i) Karthikeyan, S. V.; Perumal, S. Tetrahedron Lett. 2007,
48, 2261–2265.
21. (a) Ranjith Kumar, R.; Perumal, S.; Senthilkumar, P.; Yogeeswari, P.; Sriram, D. J.
Med. Chem. 2008, 51, 5731–5735; (b) Ranjith Kumar, R.; Perumal, S.;
Senthilkumar, P.; Yogeeswari, P.; Sriram, D. Tetrahedron 2008, 64, 2962–
2971; (c) Balamurugan, K.; Jeyachandran, V.; Perumal, S.; Manjashetty, T. H.;
Yogeeswari, P.; Sriram, D. Eur. J. Med. Chem. 2010, 45, 682–688; (d)
Karthikeyan, S. V.; Perumal, S.; Krithika, A. S.; Yogeeswari, P.; Sriram, D.
Bioorg. Med. Chem. Lett. 2009, 19, 3006–3009; (e) Ranjith Kumar, R.; Perumal,
S.; Manju, S. C.; Bhatt, P.; Yogeeswari, P.; Sriram, D. Bioorg. Med. Chem. Lett.
2009, 19, 3461–3465; (f) Ranjith Kumar, R.; Perumal, S.; Senthilkumar, P.;
Yogeeswari, P.; Sriram, D. Eur. J. Med. Chem. 2009, 44, 3821–3829.
22. (a)For general selected reviews and monographs of microwave-assisted
organic synthesis, see: Microwaves in Organic Synthesis; Loupy, A., Ed.; Wiley-
VCH, 2002; (b) Varma, R. S. Advances in Green Chemistry: Chemical Synthesis
Using Microwave Irradiation; AstraZeneca Research Foundation India, 2002; (c)
Tierney, J.; Lindstrom, P. Microwave Assisted Organic Synthesis; Blackwell, 2004;
(d) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 43, 6250–6284.
Acknowledgments
S.P. thanks (i) the Council of Scientific and Industrial Research,
New Delhi for a major research project (01(2433)/10 EMR-II) and
(ii) Department of Science and Technology, New Delhi for funds
under IRHPA program for the purchase of a high resolution NMR
spectrometer. B.D.B. thanks the University Grants Commission,
New Delhi for the award of a Junior Research Fellowship. K.B.
thanks the Council of Scientific and Industrial Research, New Delhi
for the award of a Senior Research Fellowship.
23. For a review of the impact of microwaves in green chemistry, see: Strauss, C. R.;
Varma, R. S. Top. Curr. Chem. 2006, 266, 199–231.
Supplementary data
24. Hantzsch, A. Chem. Ber. 1881, 14, 1637–1638.
25. Debache, A.; Ghalem, W.; Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B.
Tetrahedron Lett. 2009, 50, 5248–5250.
26. Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C. F. Tetrahedron Lett. 2005, 46, 5771–5774.
27. Kumar, A.; Maurya, R. A. Tetrahedron Lett. 2007, 48, 3887–3890.
28. Mobinikhaledi, A.; Foroughifar, N.; Fard, M. A. B.; Moghanian, H.; Ebrahimi, S.;
Kalhor, M. Synth. Commun. 2009, 39, 1166–1174.
Supplementary data associated with this article can be found, in
References and notes
29. Ko, S. K.; Yao, C. F. Tetrahedron 2006, 62, 7293–7299.
1. (a) Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3168–3210; (b) Zhu, J.;
Bienayme, H. Multicomponent Reactions; Wiley-VCH: Weinheim, 2005; (c)
Domling, A. Chem. Rev. 2006, 106, 17–89.
2. (a) Ugi, I. Pure Appl. Chem. 2001, 73, 187–191; (b) Nagawade, R. R.; Shinde, D. B.
Acta Chim. Slov. 2007, 54, 642–646; (c) D’Souza, D. M.; Mueller, T. J. Chem. Soc.
Rev. 2007, 36, 3169–3173; (d) Cariou, C. C. A.; Clarkson, G. J.; Shipman, M. J. Org.
Chem. 2008, 73, 9762–9764.
3. (a) Bannwarth, W.; Felder, E. Combinatorial Chemistry; Wiley-VCH: Weinheim,
2000; (b) Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org. Chem. 2003, 4101–
4111; (c) Orru, R. V. A.; De Greef, M. Synthesis 2003, 1471–1499; (d) Bienayme,
H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321–3329; (e)
Vasuki, G.; Kumaravel, K. Tetrahedron Lett. 2008, 49, 5636–5638.
4. For recent reviews, see: (a) Ugi, I.; Domling, A.; Werner, B. Heterocycl. Chem.
2000, 37, 647–658; (b) Ugi, I.; Heck, S. Comb. Chem. High Throughput Screening
2001, 4, 1–34; (c) Zhu, J. Eur. J. Org. Chem. 2003, 1133–1144; (d) Hulme, C.;
Gore, V. Curr. Med. Chem. 2003, 10, 51–80; (e) Orru, R. V. A.; De Greef, M.
Synthesis 2003, 1471–1499; (f) Weber, L. Curr. Med. Chem. 2002, 9, 2085–2093.
5. Waterman, P. G.; Muhammad, I. Phytochemistry 1985, 24, 523–527.
6. Bou-Abdullah, E.; Jossang, A.; Tadic, D.; Leboeuf, M.; Cave, A. J. Nat. Prod. 1989,
52, 273–278.
30. (a) Evans, C. G.; Gestwicki, J. E. Org. Lett. 2009, 11, 2957–2959; (b) Karade, N. N.;
Budhewar, V. H.; Shinde, S. V.; Jadhav, W. N. Lett. Org. Chem. 2007, 4, 16–19; (c)
Kumar, A.; Maurya, R. A. Tetrahedron 2007, 63, 1946–1952.
31. (a) Breitenbucher, J. G.; Figliozzi, G. Tetrahedron Lett. 2000, 41, 4311–4315; (b)
Dondoni, A.; Massi, A.; Minghini, E.; Bertolasi, V. Tetrahedron 2004, 60, 2311–
2326.
32. (a) Kikuchi, S.; Iwai, M.; Murayama, H.; Fukuzawa, S. I. Tetrahedron Lett. 2008,
49, 114–116; (b) Donelson, J. L.; Gibbs, R. A.; De, S. K. J. Mol. Catal. Chem. 2006,
256, 309–311; (c) Wang, L. M.; Sheng, J.; Zhang, L.; Han, J. W.; Fan, Z. Y.; Tian,
H.; Qian, C. T. Tetrahedron 2005, 61, 1539–1543.
33. General procedure for synthesis of 4: Microwave irradiation method: A vial
containing a mixture of 2-hydroxy-1,4-naphthoquinone (1) (1 mmol), aromatic
aldehyde (1 mmol), methyl/ethyl acetoacetate (3) (1 mmol), and NH4OAc
(2.5 mmol) in ethanol (5 ml) was sealed and placed in
a CEM Discover
microwave oven. The vial was subjected to microwave irradiation, programed
at 100 °C and 120 W. After a period of 3–5 min, the temperature reached a
plateau, 100 °C, and remained constant. After completion of the reaction
(10 min), the vial was cooled to room temperature and poured in to water
(50 ml). The precipitated solid was filtered and and purified by column
chromatography using a 7:1 petroleum ether-AcOEt mixture, to yield pure 4.
Conventional heating method: A mixture of 2-hydroxy-1,4-naphthoquinone 1
(1 mmol), the suitable aromatic aldehyde (1 mmol), methyl/ethyl acetoacetate
3 (1 mmol), and NH4OAc (2.5 mmol) in ethanol (12 ml) was heated to reflux in
an oil bath for 4 h. After completion of the reaction (TLC), the reaction mass
was poured into water (50 ml). The precipitated solid was filtered and purified
by the column chromatography using a 7:1 petroleum ether-AcOEt mixture, to
yield pure 4.
7. Tadic, D.; Cassels, B. K.; Leboeuf, M.; Cave, A. Phytochemistry 1987, 26, 537–541.
8. Rios, J. L.; Cortes, D.; Valverde, S. Planta Med. 1989, 55, 321–323.
9. Koyama, J.; Tagahara, K.; Konoshima, T.; Kozuka, M.; Yano, Y.; Taniguchi, M.
Chem. Exp. 1990, 5, 557–560.
10. Bracher, F. Arch. Pharm. (Weinheim) 1994, 327–371.
11. Lee, H.; Hong, S.-S.; Choi, J.-Y.; Cho, J.; Kim, Y.-H. Arch. Pharm. Res. 1998, 21, 73–75.
12. (a) Bracher, F. Liebigs Ann. Chem. 1989, 87–88; (b) Peterson, J. R.; Zjawiony, J. K.;
Liu, S.; Hufford, C. D.; Clark, A. M.; Rogers, R. D. J. Med. Chem. 1992, 35, 4069–
4077; (c) Zjawiony, J. K.; Srivastava, A. R.; Hufford, C. D.; Clark, A. M.
Heterocycles 1994, 39, 779–800.
13. (a) Kogl, F.; Sparenburg, J. Recl. Trav. Chim. Pays-Bas 1940, 59, 1180; (b) Kogl, F.;
Quackenbush, F. W. Recl. Trav. Chim. Pays-Bas 1944, 63, 251–260; (c) Kogl, F.;
van Wessem, G. C.; Elsbach, O. I. Recl. Trav. Chim. Pays-Bas 1945, 64, 23–29.
Characterization data of compound 4k are given below.
Ethyl 4-(4-chlorophenyl)-2-methyl-5,10-dioxo-1,4,5,10-tetrahydrobenzo[g]
quinoline-3-carboxylate (4k): Isolated as red brown solid. Yield: 88%;
mp = 209 °C; 1H NMR (300 MHz, CDCl3) dH: 1.22 (t, 3H, J = 7.2 Hz), 2.53 (s,
3H), 4.10 (q, 2H, J = 7.2 Hz), 5.34 (s, 1H), 7.12 (br s, 1H), 7.20 (d, 2H, J = 8.4 Hz),
7.30 (d, 2H, J = 8.4 Hz), 7.61–7.73 (m, 2H), 8.01–8.05 (m, 2H). 13C NMR (75 MHz,