B. Premdjee et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4973–4975
4975
thioester formation. However, this should not be significant under
normal reaction conditions. The results also emphasize the
remarkable dynamic nature of amide bonds susceptible to an
NCL/retro-NCL process, even in the absence of synthetic ‘devices’7
or inteins.8
Acknowledgments
The authors acknowledge Professor Philip E. Dawson (Scripps
Research Institute) for helpful discussions, and Jaskiranjit Kang
for performing preliminary experiments. We also acknowledge
financial support from The Royal Society, Dextra Laboratories, Uni-
versity College London, and The Wellcome Trust.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
Figure 2. Relative composition (%) of the reaction mixture as a function of time and
added
D
-CysÁHCl. The reactions were all conducted at 1 mg mlÀ1 (approx. 0.9 mM)
1. (a) Hojo, H.; Nakahara, Y. Peptide Sci. 2007, 88, 308; (b) Boltje, T. J.; Buskas, T.;
Boons, G.-J. Nat. Chem. 2009, 1, 611; (c) Gamblin, D. P.; Scanlan, E. M.; Davis, B. G.
Chem. Rev. 2009, 109, 131; (d) Seeberger, P. H. Nat. Chem. Biol. 2009, 5, 368; (e)
Wang, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2010, 132, 17045; (f) Kan, C.;
Danishefsky, S. J. Tetrahedron 2009, 65, 9047; (g) Hirano, K.; Macmillan, D.;
Tezuka, K.; Tsuji, T.; Kajihara, Y. Angew. Chem., Int. Ed. 2009, 48, 9557; (h)
Yamamoto, N.; Tanabe, Y.; Okamoto, R.; Dawson, P. E.; Kajihara, Y. J. Am. Chem.
Soc. 2008, 130, 501; (i) Piontek, C.; Silva, D. V.; Heinlein, C.; Pöhner, C.; Mezzato,
S.; Ring, P.; Martin, A.; Schmid, Franz X.; Unverzagt, C. Angew. Chem., Int. Ed.
2009, 48, 1941; (j) Piontek, C.; Ring, P.; Harjes, O.; Heinlein, C.; Mezzato, S.;
Lombana, N.; Pöhner, C.; Püttner, M.; Silva, D. V.; Martin, A.; Schmid, Franz X.;
Unverzagt, C. Angew. Chem., Int. Ed. 2009, 48, 1936; (k) Macmillan, D.; Bertozzi,
C. R. Angew. Chem., Int. Ed. 2004, 43, 1355.
2. (a) Shin, Y.; Winans, K. A.; Backes, B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R.
J. Am. Chem. Soc. 1999, 121, 11684; (b) Mezzato, S.; Schaffrath, M.; Unverzagt, C.
Angew. Chem., Int. Ed. 2005, 44, 1650; (c) Ozawa, C.; Katayama, H.; Hojo, H.;
Nakahara, Y.; Nakahara, Y. Org. Lett. 2008, 10, 3531; (d) Hirano, K.; Kajihara, Y. J.
Carbohydr. Chem. 2010, 29, 84.
3. (a) Kang, J.; Richardson, J. P.; Macmillan, D. Chem. Commun. 2009, 407; (b) Kang,
J.; Reynolds, N. L.; Tyrrell, C.; Dorin, J. R.; Macmillan, D. Org. Biomol. Chem. 2009,
7, 4918.
peptide concentration in 0.1 M Na phosphate buffer; pH 5.8, 10% w/v MESNa, 0.5%
w/v TCEPÁHCl, 60 °C, 48 h.
the reaction proceeded essentially as before although thioester
hydrolysis appeared slightly reduced.
The results suggest that such reversibility in amide bond forma-
tion, enabled by an NCL/retro-NCL sequence, could be extended to
dynamic combinatorial processes. However, it is unlikely that, un-
der usual reaction conditions, the single equivalent of cysteine that
is released will significantly compromise thioester production
through NCL.
In light of these findings it was subsequently unsurprising that a
fivefold reduction in the concentration of our glycopeptide thioes-
ter precursor 3 did not dramatically influence the production of 4,
as determined by HPLC. Notably, 4 appeared to accumulate more
rapidly when the reaction was conducted at lower concentration.
Furthermore, lowering the reaction pH, to inhibit NCL, did not give
rise to an appreciable amount of 4 after 48 h. Instead a complex
mixture of products resulting from extensive deacetylation of both
3 and 4 was obtained.
In summary, our results show that thioester formation via N?S
acyl shift is compatible with native N-glycopeptides at pH 5.8.
Deacetylated sugars should be employed in reactions conducted
at lower pH otherwise partial sugar deacetylation can complicate
analysis. These simply glycosylated thioesters can, through NCL,
be assembled into glycoproteins.6 Furthermore, we investigated
the potential for NCL to occur during thioester formation using a
cysteine exchange reaction and found that NCL can clearly reverse
4. Macmillan, D.; Arham, L. J. Am. Chem. Soc. 2004, 126, 9530.
5. Burlina, F.; Dixson, D. D.; Doyle, R. P.; Chassaing, G.; Boddy, C. N.; Dawson, P.;
Offer, J. Chem. Commun. 2008, 2785.
6. (a) Schwarz, F.; Huang, W.; Li, C.; Schulz, B. L.; Lizak, C.; Palumbo, A.; Numao, S.;
Neri, D.; Aebi, M.; Wang, L.-X. Nat. Chem. Biol. 2010, 6, 264; (b) Wang, L.-X.;
Huang, W. Curr. Opin. Chem. Biol. 2009, 13, 592.
7. (a) Kang, J.; Macmillan, D. Org. Biomol. Chem. 2010, 8, 1993; (b) Kawakami, T.;
Shimizu, S.; Aimoto, S. Bull. Chem. Soc. Jpn. 2010, 83, 570; (c) Nakamura, K. i.;
Sumida, M.; Kawakami, T.; Vorherr, T.; Aimoto, S. Bull. Chem. Soc. Jpn. 2006, 79,
1773; (d) Hojo, H.; Onuma, Y.; Akimoto, Y.; Nakahara, Y.; Nakahara, Y.
Tetrahedron Lett. 2007, 48, 25; (e) Tsuda, S.; Shigenaga, A.; Bando, K.; Otaka, A.
Org. Lett. 2009, 11, 823; (f) Ohta, Y.; Itoh, S.; Shigenaga, A.; Shintaku, S.; Fujii, N.;
Otaka, A. Org. Lett. 2006, 8, 467.
8. (a) Saleh, L.; Perler, F. B. Chem. Rec. 2006, 6, 183; (b) Pellois, J.-P.; Muir, T. W. Curr.
Opin. Chem. Biol. 2006, 10, 487; (c) Mootz, H. D. Chembiochem 2009, 10, 2579.