M. P. Dushing, C. V. Ramana / Tetrahedron Letters 52 (2011) 4627–4630
4629
acetonide hydrolysis of the resulting pivaloates 13–15 followed by
References and notes
peracetylation (Ac2O/Et3N) gave a 1:1 anomeric mixture of diace-
tates 16ꢀ18, respectively. The glycosidation of the anomeric mix-
tures of 16–18 was carried out under modified Vorbrüggen11
conditions employing uracil as the glycosyl acceptor to afford the
protected nucleosides 19–21, respectively. Subjecting 19–21 to
Zemplen’s deacetylation afforded the uridines 1–3 having the key
diyne unit for the cycloisomerization reactions.
With the fully elaborated diyne frameworks in place, we at-
tempted the cyclotrimerization of diynes 1–3 with symmetric and
unsymmetric alkynes (Scheme 2). The trimerization reactions with
acetylene proceeded effectively with 5 mol % of Cp⁄RuCl(cod)12 (in
dichloroethane–ethanol mixture) at rt in a sealed tube to afford the
products 22,14 25 and 30, respectively from the diynes 1–3 (75–79%
yield). The diacetate of 2-butyne-1,4-diol, bis-(trimethylsilyl)-acety-
lene and dimethylacetylene dicarboxylate were explored as the rep-
resentative symmetric disubstituted alkynes for the trimerization
reactions. Amongst the three alkynes, the cyclotrimerization of diyne
1 with the diacetate of 2-butyne-1,4-diol was facile with the Wilkin-
son’s catalyst13 (4:1 toluene-ethanol, 80 °C, 8 h) and yielded 23.
With the other two alkynes, the formation of a complex mixture
was observed. The attempted cyclotrimerization of diynes 2 and 3
with any of the above alkynes was found to be unsuccesful at differ-
ent temperatures and intact diynes 2 or 3 were isolated.
Coming to the terminal alkynes, the cyclotrimerization reaction
of diyne 1 with 1-heptyne [using 5 mol % of Cp⁄RuCl(cod) in dichlo-
roethane, rt] is clean and gave a 1:1 regiomeric mixture 24 in 80%
yield. Under similar conditions, the cyclotrimerization of diynes 2
and 3 with 1-octyne as a substrate proceeded smoothly and gave
the corresponding nucleosides 26 and 31 in good yields (78% and
74%) and with complete regioselectivity. For example in the 1H
NMR spectrum of 31, the two aromatic protons appeared as singlets
at d 6.85 and 6.95 ppm. The regioselectivity noticed with the trimer-
ization of diynes 2 and 3 endorses them for further exploration in
constructing the spiro-nucleosides library. Next the cyclotrimeriza-
tion reactions with the diynes 2 and 3 were explored employing di-
verse terminal alkynes such as phenyl acetylene15 and 1-chloro-4-
pentyne and 3-aminophenylacetylene to understand the tolerance
for the functional groups such as the alkyl chloride and the amino
group. The reactions in general are clean, the regioselectivity was
excellent, and products are obtained in good yields (78–83%). The
chloro functional group present in the products 29 and 33, amino
group in 28 provide a suitable handle for further diversification.
In conclusion, a simple protocol comprising the [2+2+2]-cyclotri-
merisation of the fully deprotected nucleoside diynes as the last step
of the process has been developed for a rapid access to C(30)-
dihydroisobenzofuran spiroannulated nucleosides. During the syn-
thesisofthe penultimate furanose-nucleoside diynes, wehave shown
that proceeding with ribofuranose intermediates having a pivaloyl
protection at C(5)-OH is a reliable approach to avoiding unwanted
pyranose formation during the hydrolysis and peracetylation.
1. For selected reviews on sugar modification in nucleosides, see: (a) Wilson, C.;
Keefe, A. D. Curr. Opin. Chem. Biol. 2006, 10, 607–614; (b) Corey, D. R. J. Clin.
Invest. 2007, 117, 3615–3622; (c) Cobb, A. J. A. Org. Biomo. Chem. 2007, 5, 3260–
3275; (d) Faria, M.; Ulrich, H. Curr. Opin. Mol. Ther. 2008, 10, 168–175.
2. For selected reviews on conformation restriction of furanose rings, see: (a)
Kool, E. T. Chem. Rev. 1997, 97, 1473–1487; (b) Herdewijn, P. Biochim. Biophys.
Acta—Gene Struct. Exp. 1999, 1489, 167–179; (c) Simon, C. Nucliosides Mimetics:
Their Chemistry and Biological Properties; Gordon and Breaach Science
Publishers: Amsterdam, 2001. pp. 3; (d) Choi, Y.; Moon, H. R.; Yoshimura, Y.;
Marquez, V. E. Nucleosides, Nucleotides and Nucleic Acids 2003, 22, 547–557; (e)
Petersen, M.; Wengel, J. Trends Biotechnol. 2003, 21, 74–81.; (f) Paquette, L. A.
Aust. J. Chem. 2004, 57, 7–17.
3. For spiroannulation on sugar backbone of nucleosides, see: (a) Meldgaard, M.;
Wengel, J. J. Chem. Soc. Perkin Trans. 1 2000, 3539–3554; (b) Børsting, P.;
Sørensen, A. M.; Nielsen, P. Synthesis 2002, 797–801; (c) Paquette, L. A.;
Seekamp, C. K.; Kahane, A. L. J. Org. Chem. 2003, 68, 8614–8624; (d) Bonache,
M.-C.; Chamorro, C.; Cordeiro, A.; Camarasa, M.-J.; Jimeno, M.-L.; San-Félix, A. J.
Org. Chem. 2004, 69, 8758–8766; (e) Hartung, R. E.; Paquette, L. A. Synthesis
2005, 3209–3218; (f) Sahabuddin, S.; Roy, A.; Drew, M. G. B.; Roy, B. G.; Achari,
B.; Mandal, S. B. J. Org. Chem. 2006, 71, 5980–5992; (g) Roy, A.; Achari, B.;
Mandal, S. B. Tetrahedron Lett. 2006, 47, 3875–3879; (h) Tripathi, S.; Roy, B. G.;
Drew, M. G. B.; Achari, B.; Mandal, S. B. J. Org. Chem. 2007, 72, 7427–7430; (i)
Choi, K. W.; Brimble, M. A. Org. Biomol. Chem. 2009, 7, 1424–1436; (j) Versteeg,
K.; Zwilling, D.; Wang, H.; Church, K. M. Tetrahedron 2010, 66, 8145–8150.
4. For C(30)-spiroannulation on nucleoside templates, see: (a) Balzarini, J.; Pérez-
Pérez, M.-J.; San-Félix, A.; Schols, D.; Perno, C.-F.; Vandamme, A.-M.; Camarasa,
M.-J.; De Clercq, E. Proc. Natl. Acad. Sci. 1992, 89, 4392–4396; (b) Camarasa, M.-
J.; Pérez-Pérez, M.-J.; San-Félix, A.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1992,
35, 2721–2727; (c) Jonckheere, H.; Taymans, J.-M.; Balzarini, J.; Velazquez, S.;
Camarasa, M. J.; Desmyter, J.; De Clercq, E.; Anne, J. J. Biol. Chem. 1994, 269,
25255–25258; (d) Nielsen, P.; Larsen, K.; Wengel, J. Acta Chem. Scand. 1996, 50,
1030–1035; (e) De Castro, S.; Lobatón, E.; Pérez-Pérez, M.-J.; San-Félix, A.;
Cordeiro, A.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.; Camarasa, M.-J.;
Velázquez, S. J. Med. Chem. 2005, 48, 1158–1168.
5. (a) Arnone, A.; Assante, G.; de Pava, O. V. Phytochemistry 1990, 29, 613–616; (b)
Namikoshi, M.; Kobayashi, H.; Yoshimoto, T.; Meguro, S. Chem. Lett. 2000, 29,
308–309; (c) Mukhopadhyay, H.; Mukhopadhyay, H.; Yoshimoto, T.; Meguro, S.
Tetrahedron 2001, 57, 9475–9480; (d) Strobel, G.; Ford, E.; Worapong, J.;
Harper, J. K.; Arif, A. M.; Grant, D. M.; Fung, P. C. W.; Chau, R. M. W.
Phytochemistry 2002, 60, 179–183; (e) Ziegert, R. E.; Torang, J.; Knepper, K.;
Brase, S. J. Comb. Chem. 2005, 7, 147–169; (f) Sato, T.; Ohtake, Nishimoto, M.;
Emura, T. K.; Yamaguchi T. M.; Takami K. PCT. Int. Appl. WO2008013277, 2008.
6. For cyclotrimerization on sugar templates, see: (a) McDonald, F. E.; Zhu, H. Y.
H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605–6606; (b) Yamamoto, Y.;
Saigoku, T.; Nishiyamaa, Hisao; Itohb, Kenji Chem. Commun. 2004, 2702–2703;
(c) Yamamoto, Y.; Saigoku, T.; Nishiyama, H.; Ohgai, T.; Itoh, K. Org. Biomol.
Chem. 2005, 3, 1768–1775; (d) Novak, P.; Pohl, R.; Kotora, M.; Hocek, M. Org.
Lett. 2006, 8, 2051–2054; (e) Yamamoto, Y.; Hashimoto, T.; Hattori, K.; Kikuchi,
M.; Nishiyama, H. Org. Lett. 2006, 8, 3565–3568; (f) Ramana, C. V.;
Suryawanshi, S. B. Tetrahedron Lett. 2008, 49, 445–448.
7. Selected reviews: (a) Zhou, L. S.; Li, S.; Kanno, K.; Takahashi, T. Heterocycles
2010, 80, 725–738; (b) Omae, I. App. Organomet. Chem. 2008, 22, 149–166; (c)
Agenet, N.; Buisine, O.; Slowinski, F.; Gandon, V.; Aubert, C.; Malacria, M. In
Organic Reactions; John Wiley and Sons Inc.: Hoboken, New Jersey, 2007; vol.
68; (d) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307–2327; (e)
Yamamoto, Y. Curr. Org. Chem. 2005, 9, 503–519; (f) Kotha, S.; Brahmachary, E.;
Lahiri, K. Eur. J. Org. Chem. 2005, 4741–4767.
8. For recent total synthesis employing [2+2+2] cyclotrimerization, see: (a)
McDonald, F. E.; Smolentsev, V. Org. Lett. 2002, 4, 745–748; (b) Alayrac, C.;
Schollmeyer, D.; Witulski, B. Chem. Commun. 2001, 1464–1466; (c) Witulski, B.;
Zimmermann, A.; Gowans, N. D. Chem. Commun. 2002, 8, 2984–2985; (d)
Anderson, E. A.; Alexanian, E. J.; Sorensen, E. J. Angew. Chem., Int. Ed. 2004, 43,
1998–2001; (e) Moser, M.; Sun, X.; Hudlicky, T. Org. Lett. 2005, 7, 5669–5672;
(f) Hudlicky, T.; Moser, M.; Banfield, S. C.; Rinner, U.; Chapius, J.-C.; Pettit, G. R.
Can. J. Chem. 2008, 84, 1313–1337; (g) Ramana, C. V.; Salian, S. R.; Gonnade, R.
G. Eur. J. Org. Chem. 2007, 5483–5486; (h) Alayrac, C.; Schollmeyer, D.; Witulski,
B. Chem. Commun. 2009, 1464–1466; (i) Kotha, S.; Khedkar, P. Eur. J. Org. Chem.
2009, 730–738; (j) Yuan, C. X.; Chang, C. T.; Axelrod, A.; Siegel, D. J. Am. Chem.
Soc. 2010, 132, 5924–5925; (k) Nicolaou, K. C.; Wang, J.; Tang, Y.; Botta, L. J. Am.
Chem. Soc. 2010, 132, 11350–11363; (l) Zou, Y.; Deiters, A. J. Org. Chem. 2010,
75, 5355–5358; (m) Dallinger, D.; Irfan, M.; Suljanovic, A.; Kappe, C. O. J. Org.
Chem. 2010, 75, 5278–5288; (n) McIver, A. L.; Deiters, A. Org. Lett. 2010, 12,
1288–1291; (o) Watanabe, J.; Sugiyama, Y.; Nomura, A.; Azumatei, S.;
Goswami, A.; Saino, N.; Okamoto, S. Macromolecules 2010, 43, 2213–2218; (p)
Bauer, R. A.; DiBlasi, C. M.; Tan, D. S. Org. Lett. 2010, 12, 2084–2087; (q) Komine,
Y.; Tanaka, K. Org. Lett. 2010, 12, 1312–1315; (r) Kobayashi, M.; Suda, T.;
Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2011, 50, 1664–1667.
Acknowledgments
We thank the Ministry of Science and Technology for funding
through the Department of Science and Technology under the
Green Chemistry Program (NO. SR/S5/GC-20/2007). Financial sup-
port from the CSIR (New Delhi) in the form of research fellowships
to MPD is gratefully acknowledged.
Supplementary data
9. Suryawanshi, S. B.; Dushing, M. P.; Gonnade, R. G.; Ramana, C. V. Tetrahedron
2010, 66, 6085–6096.
Supplementary data (1H-, 13C- DEPT and MS of selected com-
pounds) associated with this article can be found, in the online ver-
10. (a) Mallik, R.; Gonnade, R. G.; Ramana, C. V. Tetrahedron 2008, 64, 219–222; (b)
Ramana, C. V.; Mallik, R.; Gonnade, R. G.; Gurjar, M. K. Tetrahedron lett. 2006,
47, 3649–3652; (c) Hattori, H.; Tanaka, M.; Fukushima, M.; Sasaki, T.; Matsuda,
A. J. Med. Chem. 1996, 39, 5005–5011.