ACS Combinatorial Science
RESEARCH ARTICLE
Chemical Libraries for Drug Discovery and Chemical Biology: 2008.
J. Comb. Chem. 2009, 11, 739–790. (c) Dolle, R. E.; Bourdonnec, B. L.;
Goodman, A. J.; Morales, G. A.; Thomas, C. J.; Zhang, W. Comprehen-
sive Survey of Chemical Libraries for Drug Discovery and Chemical
Biology: 2007. J. Comb. Chem. 2008, 10, 753–802.
(2) (a) Drews, J. Drug Discovery: A Historical Perspective. Science
2000, 287, 1960–1964. (b) Navia, M. A. A Chicken in Every Pot, Thanks
to Sulfonamide Drugs. Science 2000, 288, 2132–2133. (c) Page, M. I.
β-Sultams Mechanism of Reactions and Use as Inhibitors of Serine
Proteases. Acc. Chem. Res. 2004, 37, 297–303. For an extensive list of
biologically active sultams see (d) Rolfe, A.; Young, K.; Hanson, P. R.
Domino Heck-Aza-Michael Reactions: A One-pot, Multi-Component
Approach to 1,2-Benzisothiazoline-3-acetic acid 1,1-dioxides. Eur. J. Org.
Chem. 2008, 5254–5262.
(3) (a) Nhien, A. N. V.; Tomassi, C.; Len, C.; Marco-Contelles, J. L.;
Balzarini, J.; Pannecouque, C.; Clerq, E. D.; Postel, D. First Synthesis
and Evaluation of the Inhibitory Effects of Aza Analogues of TSAO on
HIV-1 Replication. J. Med. Chem. 2005, 48, 4276–4284. (b) Sluis-
Cremer, N.; Hamamouch, N.; San-Felix, A.; Velazquez, S.; Balzarini,
J.; Camarasa, M.-J. Structure-Activity Relationships of [20,50-Bis-O-
(tert-butyldimethylsilyl)-β-D-ribofuranosyl]- 30-spiro-500-(400-amino-100,200-
oxathiole-200,200-dioxide)thymine Derivatives as Inhibitors of HIV-1
Reverse Transcriptase Dimerization. J. Med. Chem. 2006, 49, 4834–
4841. (c) Chen, Z.; Demuth, T. P., Jr.; Wireko, F. C. Stereoselective
synthesis and antibacterial evaluation of 4-amido-isothiazolidinone
oxides. Bioorg. Med. Chem. Lett. 2001, 11, 2111–2115.
(4) (a) van den Brook, S. A. M.; Meeuwissen, S, A.; van Delft, F. L.
Rutjes, F. P. J. T. Natural products containing medium-sized nitrogen
heterocycles synthesized by ring-closing alkene metathesis. Metathesis in
Natural Product Synthesis; Cossy, J., Areniyadis, S., Meyer, C., Eds.;
Wiley-VCH: Weinheim, Germany, 2010; pp 45ꢀ85. (b) Thomas, C. D.;
Hanson, P. R. Phosphorus and Sulfur Heterocycles via Ring-Closing
Metathesis: Application in Natural Product Synthesis. Metathesis in
Natural Product Synthesis; Cossy, J., Areniyadis, S., Meyer, C., Eds.;
Wiley-VCH: Weinheim, Germany, 2010; pp 129ꢀ144. (c) Deiters, A.;
Martin, S. F. Synthesis of oxygen- and nitrogen-containing hetero-
cycles by ring-closing metathesis. Chem. Rev. 2004, 104, 2199–2238.
(d) Hanson, P. R.; Stoianova, D. S. Ring-closing metathesis strategy to
P-heterocycles. Tetrahedron Lett. 1999, 40, 3297–3330. (e) Stoianova,
D. S.; Hanson, P. R. A Ring-Closing Metathesis Strategy to Phospho-
nosugars. Org. Lett. 2001, 21, 3285–3288.
(f)Che, C.; Li, S.; Jiang, X.; Quan, J.; Lin, S.; Yang, Z. One-Pot Syntheses
of Chromeno[3,4-c]pyrrole-3,4-diones via Ugi-4CR and Intramolecu-
lar Michael Addition. Org. Lett. 2010, 12, 4682–4686. (g) Fustero, S.;
Catalꢀan, S.; Sꢀanchez-Rosellꢀo, M.; Simꢀon-Fuentes, A.; Pozo, C. del.
Tandem Asymmetric Michael ReactionꢀIntramolecular Michael
Addition. An Easy Entry to Chiral Fluorinated 1,4-Dihydropyridines.
Org. Lett. 2010, 12, 3484–3487. (h) Priebbenow, D. L.; Henderson,
L. C.; Pfeffer, F. M.; Stewart, S. G. Domino HeckꢀAza-Michael
Reactions: Efficient Access to 1-Substituted Tetrahydro-β-carbolines.
J. Org. Chem. 2010, 75, 1787–1790. (i) Liu, S.-W.; Hsu, H.-C.;
Chang, C.-H.; Tsai, H.-H. G.; Hou, D.-R. Asymmetric Synthesis of
(ꢀ)-Lentiginosine by Double Aza-Michael Reaction. Eur. J. Org. Chem.
2010, 4771–4773. (j) Comesse, S.; Sanselme, M.; Daïch, A. New and
Expeditious Tandem Sequence Aza-Michael/Intramolecular Nucleo-
philic Substitution Route to Substituted γ-Lactams: Synthesis of
the Tricyclic Core of (()-Martinellines. J. Org. Chem. 2008, 73,
5566–5569. (k) Enders, D.; Narine, A. A.; Toulgoat, F.; Biscchops,
T. Asymmetric Brønsted Acid Catalyzed Isoindoline Synthesis:
Enhancement of Enantiomeric Ratio by Stereoablative Kinetic Resolu-
tion. Angew. Chem., Int. Ed. 2008, 47, 5661–5665. (l) Carlson, E. C.;
Rathbone, L. K.; Yang, H.; Collett, N. D.; Carter, R. G. Improved
Protocol for Asymmetric, Intramolecular Heteroatom Michael Addi-
tion Using Organocatalysis: Enantioselective Syntheses of Homopro-
line, Pelletierine, and Homopipecolic Acid. J. Org. Chem. 2008, 73,
5155–5158. (m) Takasu, K.; Nishida, N.; Tomimura, A.; Ihara, M.
Convenient Synthesis of Substituted Piperidinones from R,β-Unsatu-
rated Amides: Formal Synthesis of Deplancheine, Tacamonine, and
Paroxetine. J. Org. Chem. 2005, 70, 3957–3962.
(7) (a) Zhou, A.; Rayabarapu, D.; Hanson, P. R. “Click, Click,
Cyclize”: A DOS Approach to Sultams Utilizing Vinyl Sulfonamide
Linchpins. Org. Lett. 2009, 11, 531–534. (b) Zhou, A.; Hanson, P. R.
Synthesis of Sultam Scaffolds via Intramolecular Oxa-Michael and
Diastereoselective BaylisꢀHillman Reactions. Org. Lett. 2008, 10, 2951–
2954. (c) Zang, Q.; Javed, S.; Ullah, F.; Zhou, A.; Knudtson, C. A.; Bi, D.;
Bashac, F. Z.; Organ, M. G.; Hanson, P. R. Application of a Double
aza-Michael Reaction in a “Click, Click, Cy-Click” Strategy: From Bench
to Flow. Synthesis 2011.
(8) Scholl, M.; Ding, Lee, C. W.; Grubbs, R. H. Synthesis and
Activity of a New Generation of Ruthenium-Based Olefin Metathesis
Catalysts Coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-
ylidene Ligands. Org. Lett. 1999, 1, 953–956.
(9) A variety of metathesis catalyst were investigated, including
[(PCy3)2(Cl)2Ru=CHPh; cat-A], [(IMesH2)(PCy3)(Cl)2Ru=CHPh;
cat-B], and the Hoveyda-Grubbs second-generation catalyst.
(10) Akella, L. B.; Marcaurelle, L. A. Application of a Sparse Matrix
Design Strategy to the Synthesis of DOS Libraries. ACS Comb. Sci. 2011,
13 (4), 357–364.
(5) (a) Hanson, P. R.; Probst, D. A.; Robinson, R. E.; Yau, M. Cyclic
sulfonamides via the ring-closing metathesis reaction. Tetrahedron Lett.
1999, 40, 4761–4764. (b) McReynolds, M. D.; Dougherty, J. M.;
Hanson, P. R. Synthesis of Phosphorus and Sulfur Heterocycles via
Ring-Closing Olefin Metathesis. Chem. Rev. 2004, 104, 2239–2258.
(c) Jimꢀenez-Hopkins, M.; Hanson, P. R. An RCM Strategy to Stereodiverse
δ-Sultam Scaffolds. Org. Lett. 2008, 10, 2223–2236. (d) Hanessian,
S.; Sailes, H.; Therrien, E. Synthesis of functionally diverse bicyclic
sulfonamides as constrained proline analogues and application to the
design of potential thrombin inhibitors. Tetrahedron 2003, 59, 7047–
7056.
(6) (a) Ying, Y.; Kim, H.; Hong, J. Stereoselective Synthesis of 2,6-
cis- and 2,6-trans-Piperidines through Organocatalytic Aza-Michael
Reactions: A Facile Synthesis of (+)-Myrtine and (ꢀ)-Epimyrtine.
Org. Lett. 2011, 13, 796–799. (b) Fustero, S.; Monteagudo, S.;
Sꢀanhez-Rosellꢀo, M.; Flores, S.; Barrio, P.; del Pozo, C. N-Sulfinyl Amines
as a Nitrogen Source in the Asymmetric Intramolecular Aza-Michael
Reaction: Total Synthesis of (ꢀ)-Pinidinol. Chem.—Eur. J. 2010,
16, 9835–9845. (c) Cai, Q.; Zheng, C.; You, S.-L. Enantioselective
Intramolecular Aza-Michael Additions of Indoles Catalyzed by Chiral
Phosphoric Acids. Angew. Chem., Int. Ed. 2010, 49, 8666–8669.
(d) Ghorai, M. K.; Halder, S.; Das, R. K. Domino Imino-Aldolꢀ
Aza-Michael Reaction: One-Pot Diastereo- and Enantioselective Synth-
esis of Piperidines. J. Org. Chem. 2010, 75, 7061–7072. (e) Fustero, S.;
Moscardꢀo, J.; Sꢀanchez-Rosellꢀo, M.; Rodríguez, E.; Barrio, P. Tandem
Nucleophilic AdditionꢀIntramolecular Aza-Michael Reaction: Facile
Synthesis of Chiral Fluorinated Isoindolines. Org. Lett. 2010, 12, 5494–5497.
(11) Full in-silico data and detailed calculation information is
provided in the Supporting Information.
(12) Representative compounds with full data set available in
Supporting Information.
(13) Zhang, M.; Vedantham, P.; Flynn, D. L.; Hanson, P. R. High-
Load, Soluble Oligomeric Carbodiimide: Synthesis and Application in
Coupling Reactions. J. Org. Chem. 2004, 69, 8340–8344.
(14) Despite purification via standard column chromatography, all
compounds generated as part of the validation library are submitted to
reverse-phase automated mass-directed LCMS to validate the stability of
these compounds under this process along with purity analysis required
by the NIH MLPCN for HTS screening.
517
dx.doi.org/10.1021/co200093c |ACS Comb. Sci. 2011, 13, 511–517