10.1002/anie.202004557
Angewandte Chemie International Edition
COMMUNICATION
Chem. 1990, 55, 1959–1964.
nucleophiles in these reactions, leading to the formation of tertiary
and quaternary centers in good to excellent yields. Importantly,
the products of these reactions, which are non-trivial and would
be difficult to form by other means, retain the diazo functional
group, which could be taken advantage of in a variety of
subsequent synthetic transformations. As the indole motif is
present in numerous biologically active natural products, the
reaction described here may enable new strategies for the
synthesis of indole alkaloids. We envision that more structurally
complex enoxy silanes could be employed to form products which
would enable the rapid assembly of chemically rich polycyclic
scaffolds. Further studies are ongoing to establish the full scope
of these conjugate addition reactions, and efforts to render the
conjugate addition enantioselective are being assessed.
[28]
[29]
D. E. Applequist, H. Babad, J. Org. Chem. 1962, 27, 288–290.
A. C. Day, P. Raymond, R. M. Southam, M. C. Whiting, J. Chem.
Soc. C 1966, 467–469.
A. J. Wommack, J. S. Kingsbury, J. Org. Chem. 2013, 78, 10573–
10587.
C. Perusquía-Hernández, G. R. Lara-Issasi, B. A. Frontana-Uribe,
E. Cuevas-Yañez, Tetrahedron Lett. 2013, 54, 3302–3305.
S. M. Nicolle, C. J. Moody, Chem. – A Eur. J. 2014, 20, 4420–4425.
D. Rackl, C.-J. Yoo, C. W. Jones, H. M. L. Davies, Org. Lett. 2017,
19, 3055–3058.
[30]
[31]
[32]
[33]
[34]
M. E. Furrow, A. G. Myers, J. Am. Chem. Soc. 2004, 126, 12222–
12223.
[35]
[36]
[37]
[38]
E. M. D. Allouche, A. B. Charette, Chem. Sci. 2019, 10, 3802–3806.
M. I. Javed, M. Brewer, Org. Lett. 2007, 9, 1789–1792.
T. L. Holton, H. Shechter, J. Org. Chem. 1995, 60, 4725–4729.
E. Wenkert, C. A. McPherson, J. Am. Chem. Soc. 1972, 94, 8084–
8090.
[39]
[40]
C. Draghici, M. Brewer, J. Am. Chem. Soc. 2008, 130, 3766–3767.
S. E. Cleary, M. J. Hensinger, M. Brewer, Chem. Sci. 2017, 8,
6810–6814.
Acknowledgements
[41]
[42]
J. Fang, M. Brewer, Org. Lett. 2018, 20, 7384–7387.
M. J. Hensinger, N. J. Dodge, M. Brewer, Org. Lett. 2020, 22, 497–
500.
S. E. Cleary, M. J. Hensinger, Z.-X. Qin, X. Hong, M. Brewer, J.
Org. Chem. 2019, 84, 15154–15164.
K. Bott, Angew. Chemie Int. Ed. 1979, 18, 259–265.
I. Szele, M. Tencer, H. Zollinger, Helv. Chim. Acta 1983, 14, 1691–
1703.
W. Lorenz, G. Maas, J. Org. Chem. 1987, 52, 375–381.
R. W. Saalfrank, B. Weiss, U. Wirth, K. Peters, H. G. von Schnering,
Z. Naturforsch 1989, 44b, 587–597.
Financial support from the National Science Foundation (CHE-
1665113) is gratefully acknowledged. Mass spectrometry data
was acquired by Bruce O’Rourke at The University of Vermont
with support from the National Institutes of Health (NIH) grants
S10-OD018126 and P30-GM118228.
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
R. Glaser, G. S. Chen, C. L. Barnes, Angew. Chem. Int. Ed. 1992,
31, 740–743.
T. Mizutani, M. Jinguji, H. Yamataka, Bull. Chem. Soc. Jpn. 2012,
85, 1112–1119.
M. Hawsawi, A. Wickramasinghe, D. Crich, J. Org. Chem. 2019, 84,
Keywords: Conjugate addition • Michael addition • Diazo •
quaternary center • Indole
14688–14700.
[51]
[52]
[53]
[54]
[55]
F. E. Koehn, G. T. Carter, Nat. Rev. Drug Discov. 2005, 4, 206–220.
D. J. Newman, G. M. Cragg, J. Nat. Prod. 2016, 79, 629–661.
T. Ling, F. Rivas, Tetrahedron 2016, 72, 6729–6777.
D. J. Newman, J. Med. Chem. 2008, 51, 2589–2599.
Y. Tu, C. Jeffries, H. Ruan, C. Nelson, D. Smithson, A. A. Shelat, K.
M. Brown, X.-C. Li, J. O. Hester, T. Simillie, I. A. Khan, L. Walker, K.
Guy, B. Yang, J. Nat. Prod. 2010, 73, 751–754.
P. Vuorelaa, M. Leinonenb, P. Saikkuc, P. Tammelaa, J. P. Rauhad,
T. Wennberge, H. Vuorela, Curr. Med. Chem. 2004, 11, 1375–1389.
M. Büschleb, S. Dorich, S. Hanessian, D. Tao, K. B. Schenthal, L.
E. Overman, Angew. Chem. Int. Ed. 2016, 55, 4156–4186.
A. Y. Hong, B. M. Stoltz, European J. Org. Chem. 2013, 2013,
2745–2759.
E. J. Corey, L. Kurti, Enantioselective Chemical Synthesis: Methods,
Logic, and Practice, Academic Press, Cambridge, MA, 2010.
H. Pellissier, Chem. Rev. 2013, 113, 442–524.
Z.-L. Song, C.-A. Fan, Y.-Q. Tu, Chem. Rev. 2011, 111, 7523–7556.
J. Feng, M. Holmes, M. J. Kirsche, Chem. Rev. 2017, 117, 12564–
12580.
T. V. Sravanthi, S. L. Manju, Eur. J. Pharm. Sci. 2016, 91, 1–10.
F. de Sa Alves, E. Barreiro, C. Manssour Fraga, Mini-Reviews Med.
Chem. 2009, 9, 782–793.
S. Thokchom Prasanta, S. Okram Mukherjee, Mini-Reviews Med.
Chem. 2018, 18, 9–25.
Y. Huang, H. Tan, Z. Guo, X. Wu, Q. Zhang, L. Zhang, Y. Diao, J.
Plant Biol. 2016, 59, 203–214.
T. L. Metz, J. Evans, L. M. Stanley, Org. Lett. 2017, 19, 3442–3445.
M. E. Kieffer, L. M. Repka, S. E. Reisman, J. Am. Chem. Soc. 2012,
134, 5131–5137.
References
[1]
[2]
M. Regitz, G. Maas, Diazo Compounds Properties and Synthesis ,
Academic Press, INC., Orlando, 1986.
H. Heydt, D. Bellus, in Science of Synthesis: Houben-Weyl Methods
of Molecular Transformations: Heteroatom Analogues of Aldehydes
and Ketones (Ed.: A. Padwa), Thieme, Stuttgart, 2004, pp. 843–
935.
[56]
[57]
[58]
[59]
[3]
K. A. Mix, M. R. Aronoff, R. T. Raines, ACS Chem. Biol. 2016, 11,
3233–3244.
[4]
[5]
T. Ye, M. A. McKervey, Chem. Rev. 1994, 94, 1091–1160.
A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire, M. A.
McKervey, Chem. Rev. 2015, 115, 9981–10080.
T. Hashimoto, K. Maruoka, Chem. Rev. 2015, 115, 5366–5412.
H. Heydt, M. Regitz, in 1,3-Dipolar Cycloaddition Chemistry (Ed.: A.
Padwa), Wiley, New York, 1984, pp. 393–558.
G. Maas, in Synthetic Applications of 1,3-Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Products (Eds.: A.
Padwa, W.H. Pearson), John Wiley And Sons, Inc., New York,
2002, p. 539.
[6]
[7]
[60]
[61]
[62]
[8]
[63]
[64]
[9]
R. Pellicciari, B. Natalini, B. M. Sadeghpour, M. Marinozzi, J. P.
Snyder, B. L. Williamson, J. T. Kuethe, A. Padwa, J. Am. Chem.
Soc. 1996, 118, 1–12.
[65]
[66]
[10]
Ł. W. Ciszewski, K. Rybicka-Jasińska, D. Gryko, Org. Biomol.
Chem. 2019, 17, 432–448.
[11]
[12]
[13]
M. P. Doyle, Chem. Rev. 1986, 86, 919–939.
[67]
[68]
W. Kirmse, Angew. Chem. Int. Ed. 2003, 42, 1088–1093.
M. P. Doyle, R. Duffy, M. Ratnikov, L. Zhou, Chem. Rev. 2010, 110,
704–724.
[69]
S. Lakhdar, M. Westermaier, F. Terrier, R. Goumont, T. Boubaker,
A. R. Ofial, H. Mayr, J. Org. Chem. 2006, 71, 9088–9095.
H. Mayr, B. Kempf, A. R. Ofial, Acc. Chem. Res. 2003, 36, 66–77.
J. Ammer, C. Nolte, H. Mayr, J. Am. Chem. Soc. 2012, 134, 13902–
13911.
N. Jiang, Z. Qu, J. Wang, Org. Lett. 2001, 3, 2989–2991.
A. B. Smith, R. K. Dieter, Tetrahedron 1981, 37, 2407–2439.
E. Nakamura, K. Tanaka, T. Fujimura, S. Aoki, P. G. Williard, J. Am.
Chem. Soc. 1993, 115, 9015–9020.
[14]
[15]
H. M. L. Davies, J. R. Manning, Nature 2008, 451, 417–424.
H. M. L. Davies, R. E. J. Beckwith, Chem. Rev. 2003, 103, 2861–
2904.
[70]
[71]
[16]
[17]
Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247–9301.
T. A. Ramirez, B. Zhao, Y. Shi, Chem. Soc. Rev. 2012, 41, 931–
942.
[72]
[73]
[74]
[18]
[19]
C. Ebner, E. M. Carreira, Chem. Rev. 2017, 117, 11651–11679.
E. Büchner, T. Curtius, Berichte der Dtsch. Chem. Gesellschaft
1884, 18, 2377–2379.
[20]
[21]
[22]
[23]
[24]
S. E. Reisman, R. R. Nani, S. Levin, Synlett 2011, 2437–2442.
W. Kirmse, European J. Org. Chem. 2002, 2193–2256.
A. Padwa, M. D. Weingarten, Chem. Rev. 1996, 96, 223–270.
A. Padwa, Z. J. Zhang, L. Zhi, J. Org. Chem. 2000, 65, 5223–5232.
A. Padwa, R. L. Chinn, S. F. Hornbuckle, Z. J. Zhang, J. Org. Chem.
1991, 56, 3271–3278.
[25]
[26]
[27]
A. H. Wee, Curr. Org. Synth. 2006, 3, 499–555.
M. Regitz, Angew. Chem. Int. Ed. 1967, 6, 733–749.
R. L. Danheiser, R. F. Miller, R. G. Brisbois, S. Z. Park1, J. Org.
4
This article is protected by copyright. All rights reserved.