Table 1. Pd-Catalyzed Arylation of Imidazo[2,1-b]thiazolea
entry
conditions
solvent yields of 3a/3a0b (%)
1
2
3
Pd(OAc)2/K3PO4/t-BuCO2Hd DMF
5/6
Pd(PPh3)2Cl2/KOAc/H2Oe
NMP
22/13 (15)c
19/3
f
Pd(OAc)2/PPh3/K2CO3
dioxane
a Reaction was performed with 1a (0.5 mmol) and 2a (1.5 mmol) in 1
mL of solvent. b Unless specified, the yield was estimated by 1H NMR.
c Isolated yield of 3a. d See ref 10i. e See ref 16. f See ref 21.
Figure 1. Imidazo[2,1-b]thiazoles with biological and medicinal
activity.
The concept of direct arylation via CꢀH bond cleavage
has received substantial attention over the past few years.9
Expensive metal-catalyzed sp2 CꢀH bond arylations such
as palladium,10 rhodium,11 or ruthenium12 have
undergone explosive growth in the past few years. Less-
expensive copper,13 iron,14 and nickel15 compounds have
also shown to be highly active in catalytic direct arylations
in recent years and have great potential for future
development.9c,d Although metal-catalyzed arylations on
various heterocyclic systems such as indolizines,16
imidazo[1,5-a]pyrazines,17 xanthines,18 and thiazoles19 ex-
ist, no direct, regioselective arylation of the imidazo[2,1-
b]thiazole core have been developed so far.
3-Methyl-6-phenylimidazo[2,1-b]thiazole (1a) was se-
lected as a substrate to investigate the possibility of aryla-
tion. In this substrate (1a), the activity of the C2ꢀH bond
was clearly different from that of the C5ꢀH bond, deduced
from their different chemical shifts (6.39 ppm for C2ꢀH
and 7.61 ppm for C5ꢀH).20 We initially tested direct
arylation of 1a using typical Pd-catalyzed conditions opti-
mized in the literature.10i,16,21 As shown in Table 1, these
approachs were largely unsuccessful. Both 3a, C-2 arylated
product, and 3a0, C-5 arylated product, were obtained in
poor yields,22 and byproduct biphenyl was also found in
the reaction (<5% yield).
(8) (a) Al-Tel, T. H.; Al-Qawasmeh, R. A.; Voelter, W. Eur. J. Org.
Chem. 2010, 5586. (b) Fidanze, S. D.; Erickson, S. A.; Wang, G. T.;
Mantei, R.; Clark, R. F.; Sorensen, B. K.; Bamaung, N. Y.; Kovar, P.;
Johnson, E. F.; Swinger, K. K.; Stewart, K. D.; Zhang, Q.; Tucker,
L. A.; Pappano, W. N.; Wilsbacher, J. L.; Wang, J. Y.; Sheppard, G. S.;
Bell, R. L.; Davidsen, S. K.; Hubbard, R. D. Bioorg. Med. Chem. Lett.
2010, 20, 2452. (c) Xu, H.; Zhang, Y.; Huang, J. Q.; Chen, W. Z. Org.
Lett. 2010, 12, 3704. (d) Guchhait, S. K.; Madaan, C.; Thakkar, B. S.
Synthesis 2009, 3293.
(9) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174. (b) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (c)
Daugulis, O.; Do, H. Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
(d) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed.
2009, 48, 9792. (e) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110, 3850.
(10) (a) Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J.
Am. Chem. Soc. 2006, 128, 4972. (b) Stuart, D. R.; Fagnou, K. Science
2007, 316, 1172. (c) Yu, J. Q.; Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.;
Breazzano, S. P.; Saunders, L. B. J. Am. Chem. Soc. 2007, 129, 3510. (d)
Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129,
12072. (e) Li, B. H.; Tian, S. L.; Fang, Z.; Shi, Z. H. Angew. Chem., Int.
Ed. 2008, 47, 1115. (f) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc.
2008, 130, 2926. (g) Yu, J. Q.; Wang, D. H.; Mei, T. S. J. Am. Chem. Soc.
2008, 130, 17676. (h) Yanagisawa, S.; Ueda, K.; Sekizawa, H.; Itami, K.
J. Am. Chem. Soc. 2009, 131, 14622. (i) Zhao, D. B.; Wang, W. D.; Lian,
S.; Yang, F.; Lan, J. B.; You, J. S. Chem.;Eur. J. 2009, 15, 1337. (j) Roy,
D.; Mom, S.; Beauperin, M.; Doucet, H.; Hierso, J. C. Angew. Chem.,
Int. Ed. 2010, 49, 6650. (k) Shibahara, F.; Yamaguchi, E.; Murai, T.
Chem. Commun. 2010, 46, 2471. (l) Ohnmacht, S. A.; Culshaw, A. J.;
Greaney, M. F. Org. Lett. 2010, 12, 224. (m) Tamba, S.; Okubo, Y.;
Tanaka, S.; Monguchi, D.; Mori, A. J. Org. Chem. 2010, 75, 6998. (n)
Kirchberg, S.; Tani, S.; Ueda, K.; Yamaguchi, J.; Studer, A.; Itami, K.
Angew. Chem., Int. Ed. 2011, 50, 2387. (o) Ioannidou, H. A.; Koutentis,
P. A. Org. Lett. 2011, 13, 1510.
(14) (a) Wen, J.; Zhang, J.; Chen, S. Y.; Li, J.; Yu, X. Q. Angew.
Chem., Int. Ed. 2008, 47, 8897. (b) Yoshikai, N.; Matsumoto, A.;
Norinder, J.; Nakamura, E. Angew. Chem., Int. Ed. 2009, 48, 2925. (c)
Vallee, F.; Mousseau, J. J.; Charette, A. B. J. Am. Chem. Soc. 2010, 132,
1514. (d) Wen, J.; Qin, S.; Ma, L. F.; Dong, L. A.; Zhang, J.; Liu, S. S.;
Duan, Y. S.; Chen, S. Y.; Hu, C. W.; Yu, X. Q. Org. Lett. 2010, 12,
2694.
(15) (a) Canivet, J.; Yamaguchi, J.; Ban, I.; Itami, K. Org. Lett. 2009,
11, 1733. (b) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
2009, 11, 1737. (c) Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Angew.
Chem., Int. Ed. 2010, 49, 2202.
(16) Park, C. H.; Ryabova, V.; Seregin, I. V.; Sromek, A. W.;
Gevorgyan, V. Org. Lett. 2004, 6, 1159.
(17) Wang, J. X.; McCubbin, J. A.; Jin, M. Z.; Laufer, R. S.; Mao,
Y. Y.; Crew, A. P.; Mulvihill, M. J.; Snieckus, V. Org. Lett. 2008, 10,
2923.
(11) (a) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman,
J. A. Org. Lett. 2004, 6, 35. (b) Wang, X.; Lane, B. S.; Sames, D. J. Am.
Chem. Soc. 2005, 127, 4996. (c) Yanagisawa, S.; Sudo, T.; Noyori, R.;
Itami, K. J. Am. Chem. Soc. 2006, 128, 11748. (d) Ackermann, L.; Born,
ꢀ
R.; Alvarez-Bercedo, P. Angew. Chem., Int. Ed. 2007, 46, 6364. (e) Lewis,
J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2008, 130, 2493. (f) Berman, A. M.; Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926.
(12) (a) Ackermann, L.; Vicente, R.; Althammer, A. Org. Lett. 2008,
10, 2299. (b) Arockiam, P.; Poirier, V.; Fischmeister, C.; Bruneau, C.;
Dixneuf, P. H. Green Chem. 2009, 11, 1871. (c) Ackermann, L.; Vicente,
R.; Potukuchi, H. K.; Pirovano, V. Org. Lett. 2010, 12, 5032. (d)
(18) Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett.
2011, 13, 1378.
(19) (a) Masui, K.; Mori, A.; Okano, K.; Takamura, K.; Kinoshita,
M.; Ikeda, T. Org. Lett. 2004, 6, 2011. (b) Turner, G. L.; Morris, J. A.;
Greaney, M. F. Angew. Chem., Int. Ed. 2007, 46, 7996.
(20) See the Supporting Information for details.
ꢁ
Ackermann, L.; Vicente, R. Top. Curr. Chem. 2010, 292, 211. (e) Stefane,
ꢁ
B.; Fabris, J.; Pozgan, F. Eur. J. Org. Chem. 2011, 3474.
(13) (a) Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 12404.
(b) Do, H. Q.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 1128. (c)
Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130,
8172. (d) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.; Vicente, R.
Org. Lett. 2008, 10, 3081. (e) Liebeskind, L. S.; Liu, S. J. Am. Chem. Soc.
2008, 130, 6918.
(21) Koubachi, J.; El Kazzouli, S.; Berteina-Raboin, S.; Mouaddib,
A.; Guillaumet, G. Synlett 2006, 3237.
(22) The arylation product (3a for C-2 position and 3a0 for C-5
position) was established by 1H NMR; see the Supporting Information
for details.
Org. Lett., Vol. 13, No. 19, 2011
5225