Mendeleev Commun., 2018, 28, 629–631
This work was supported by the Russian Science Foundation
1b + n εCL
(a)
(grant no. 16-13-10344, in part of copolymer design and synthesis)
and partially supported by the TIPS RAS State Plan (experimental
study of polymer characteristics).
ROP
O
O
d
c
f1
f2
R
b
O
O
b
c
n
O
O
d
f
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2018.11.022.
Ph
O
Ph
4.9 4.7 4.5 4.3 4.1 3.9
d/ppm
H2/cat.
c
O
c
References
b
b
R
O
O
n
1 B. Laycock, M. Nikolic´, J. M. Colwell, E. Gauthier, P. Halley, S. Bottle
and G. George, Prog. Polym. Sci., 2017, 71, 144.
2 V. Arias, P. Olsén, K. Odelius, A. Höglund and A.-C. Albertsson, Polym.
Degrad. Stability, 2016, 130, 58.
3 V. Arias, P. Olsén, K. Odelius, A. Höglund and A.-C. Albertsson, Polym.
Chem., 2015, 6, 3271.
4 L. S. Naira and C. T. Laurencin, Prog. Polym. Sci., 2007, 32, 762.
5 J. M. Anderson and M. S. Shive, Adv. Drug Deliv. Rev., 1997, 28, 72.
6 M. Hakkarainen, A. Höglund, K. Odelius and A.-C. Albertsson, J. Am.
Chem. Soc., 2007, 129, 6308.
OH OH
H+
4.9 4.7 4.5 4.3 4.1 3.9
d/ppm
O
c
a
O
O
O
+
OH
O
n
R
b
c
b
a
HO
7 K. Fu, D. W. Pack, A. M. Klibanov and R. Langer, Pharm. Res., 2000,
17, 100.
4.9 4.7 4.5 4.3 4.1 3.9
8 A. P. Pêgo, M. J. Van Luyn, L. A. Brouwer, P. B. van Wachem, A. A. Poot,
D. W. Grijpma and J. Feijen, J. Biomed. Mater. Res., 2003, 67A, 1044.
9 A. R. Amini, J. S. Wallace and S. P. Nukavarapu, J. Long Term Eff. Med.
Implants, 2011, 21, 93.
10 J. Li, G. Jiang and F. Ding, J. Appl. Polym. Sci., 2008, 109, 475.
11 M. Vert, Biomacromolecules, 2005, 6, 538.
12 T. O. Xu, H. S. Kim, T. Stahl and S. P. Nukavarapu, Biomed. Mater.,
2018, 13, 035013.
13 D. Hofmann, M. Entrialgo-Castaño, K. Kratz andA. Lendlein, Adv. Mater.,
2009, 21, 3237.
d/ppm
(b)
M ~20300 ~17000
~3300
100
50
0
9.2
9.7
10.2
10.7
11.2
Retention time/min
14 M. Vert, Int. J. Art. Org., 2011, 34, 76.
15 Z. Zhang, J. Ni, L. Chen, L. Yu, J. Xu and J. Ding, Biomaterials, 2011,
32, 4725.
16 M. Gagliardi, F. Di Michele, B. Mazzolai and A. Bifone, J. Polym. Res.,
2015, 22, 17.
17 Y.-C. Wang, Y. Li, X.-Z, Yang, Y.-Y. Yuan, L.-F. Yan and J. Wang,
Macromolecules, 2009, 42, 3026.
Figure 2 (a) The scheme of the synthesis and degradation of polymer 4b
and the corresponding fragments of 1H NMR spectra and (b) SEC traces.
group. The characteristics of obtained hydroxy functionalized
copolymers 4a,b‡ are also given in Table 1.
We studied the reactivity of hydroxy polyesters 4a,b toward
acidic (MeSO3H) and nucleophilic (TBD) reagents that are soluble
in organic media (CDCl3). NMR monitoring of the reaction
mixtures showed that the fragmentation with a formation of
γ-BL cycles is the main degradation route for both of them. SEC
analysis of the destruction products demonstrated that the length
of the fragments correlate with comonomer ratio in the starting
copolymer: thus, copolymer 4b (see Table 1, run 3) degraded
with a formation of oligomers containing ~20 monomer subunits
[Figure 2(c), SEC data]. Characteristic fragments of the 1H NMR
spectra of copolymer 4b and corresponding hydrogenation and
scission products are also provided in Figure 2.
Our results indicate that polyester macromolecule with
4-hydroxyalkylcarbonyl fragment exhibits the tendency to form
γ-butyrolactone end groups under the impact of both acidic and
basic reagents. These preliminary results allow us to anticipate
the prospects of introducing HO–(CH2)4–C=O fragments into
the polymer chain to create biomedical materials which would
not reveal an acidic inflammatory response in tissues. The study
of biodegradation of such polymers is the subject of a separate
long-term research which is currently being performed in our
laboratory.
18 Z. E. Yilmaz and C. Jérome, Macromol. Biosci., 2016, 16, 1745.
19 T.-M. Sun, J.-Z. Du, Y.-D. Yao, C.-Q. Mao, S. Dou, S.-Y. Huang, P.-Z.
Zhang, K. W. Leong, E.-W. Song and J. Wang, ACS Nano, 2011, 5, 1483.
20 P. Olsén, K. Odelius and A.-C. Albertsson, Biomacromolecules, 2016,
17, 699.
21 I. Nifant’ev,A. Shlyakhtin,V. Bagrov, B. Lozhkin, G. Zakirova, P. Ivchenko
and O. Legon’kova, React. Kinet. Mech. Cat., 2016, 117, 447.
22 W. Guerin, M. Helou, M. Slawinski, J.-M. Brusson, J.-F. Carpentier and
S. M. Guillaume, Polym. Chem., 2014, 5, 1229.
23 K.-L. Lai, L.-J. Ji, C.-Y. Long, L. Li, B. He,Y. Wu and Z.-W. Gu, J. Appl.
Polym. Sci., 2012, 123, 2204.
24 I. Shin, M. Lee, J. Lee, M. Jung, W. Lee and J.Yoon, J. Org. Chem., 2000,
65, 7667.
25 I. E. Nifant’ev, P. V. Ivchenko, A. V. Shlyakhtin and A. V. Ivanyuk, Polym.
Sci., Ser. B, 2017, 59, 147 (Vysokomol. Soedin., Ser. B, 2017, 59, 124).
26 I. E. Nifant’ev, A. V. Shlyakhtin, A. N. Tavtorkin, P. V. Ivchenko, R. S.
Borisov and A. V. Churakov, Catal. Commun., 2016, 87, 106.
27 I. E. Nifant’ev, A. V. Shlyakhtin, V. V. Bagrov, M. E. Minyaev, A. V.
Churakov, S. G. Karchevsky, K. P. Birin and P. V. Ivchenko, Dalton
Trans., 2017, 46, 12132.
‡
For details of synthetic experiments and NMR spectra of copolymers,
see Online Supplementary Materials.
Received: 4th June 2018; Com. 18/5599
– 631 –