Journal of the American Chemical Society
COMMUNICATION
X-ray diffractometer was purchased through an award to the
California Institute of Technology by the NSF CRIF program
(CHE-0639094). Financial support from the California Institute
of Technology is gratefully acknowledged.
(21) Miller, R. S.; Sealy, J. M.; Shabangi, M.; Kuhlman, M. L.; Fuchs,
J. R.; Flowers, R. A. J. Am. Chem. Soc. 2000, 122, 7718.
(22) The stereochemistry of the corresponding acetate ester was
assigned by extensive characterization using 1D and 2D NMR techni-
ques (1H-1H COSY, HMQC, HMBC, and NOESY) and three-bond
1
1HÀ H coupling constant analysis (see the SI).
’ REFERENCES
(1) Han, Q.-B.; Cheung, S.; Tai, J.; Qiao, C.-F.; Song, J.-Z.; Tso,
T.-F.; Sun, H.-D.; Xu, H.-X. Org. Lett. 2006, 8, 4727.
(2) Node, M.; Sai, M.; Fuji, K.; Fujita, E.; Shingu, T.; Watson, W. H.;
Grossie, D. Chem. Lett. 1982, 2023.
(23) ent-21 was prepared from (S,S)-pseudoephedrine following the
same sequence as that described for 21.
(24) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(25) On the basis of a strong stretch at 1775 cmÀ1 in the FTIR
spectrum, the rearranged product was tentatively assigned as the lactone
shown below (see the SI for details).
(3) Fujita, E.; Fuji, K.; Sai, M.; Node, M.; Watson, W. H.; Zabel, V.
J. Chem. Soc., Chem. Commun. 1981, 899.
(4) Kubo, I.; Pettei, M. J.; Hirotsu, K.; Tsuji, H.; Kubota, T. J. Am.
Chem. Soc. 1978, 100, 628.
(5) Takeda, Y.; Ichihara, T.; Otsuka, H.; Kido, M. Phytochemistry
1993, 33, 643.
(6) Kubo, I.; Kamikawa, T.; Isobe, T.; Kubota, T. J. Chem. Soc., Chem.
(26) Several protecting groups (PGs) for R1 were evaluated, includ-
ing TMS, ÀCOCF3, ÀCOCH2Cl, ÀCO2t-Bu, and ÀCO(4-ClPh).
These groups resulted in either increased levels of rearrangement,
low yields of 29 (R1 = PG, R2 = Ac), or poor selectivity during the
PG-removal step.
(27) (a) Schreiber, J.; Maag, H.; Hashimoto, N.; Eschenmoser, A.
Angew. Chem., Int. Ed. 1971, 10, 330. For applications in the preparation
of α-methylene carbonyls, see: (b) Danishefsky, S.; Kitahara, T.; McKee,
R.; Schuda, P. F. J. Am. Chem. Soc. 1976, 98, 6715. (c) Roberts, J. L.;
Borromeo, P. S.; Poulter, C. D. Tetrahedron Lett. 1977, 18, 1621. (d)
Takano, S.; Inomata, K.; Samizu, K.; Tomita, S.; Yanase, M.; Suzuki, M.;
Iwabuchi, Y.; Sugihara, T.; Ogasawara, K. Chem. Lett. 1989, 18, 1283.
(28) For a selection of results utilizing different conditions in the
final deprotection step, see the SI.
Commun. 1980, 1206.
(7) Li, S.-H.; Wang, J.; Niu, X.-M.; Shen, Y.-H.; Zhang, H.-J.; Sun,
H.-D.; Li, M.-L.; Tian, Q.-E.; Lu, Y.; Cao, P.; Zheng, Q.-T. Org. Lett.
2004, 6, 4327.
(8) Fuji, K.; Node, M.; Sai, M.; Fujita, E.; Takeda, S.; Unemi, N.
Chem. Pharm. Bull. 1989, 37, 1472.
(9) (a) Kenny, M. J.; Mander, L. N.; Sethi, S. Tetrahedron Lett. 1986,
27, 3923. (b) Kenny, M. J.; Mander, L. N.; Sethi, S. P. Tetrahedron Lett.
1986, 27, 3927.
(10) Adamson, G.; Mander, L. N. Aust. J. Chem. 2003, 56, 805.
(11) (a) Dong, L.; Deng, L. J.; Lim, Y. H.; Leung, G. Y. C.; Chen,
D. Y. K. Chem.—Eur. J. 2011, 17, 5778. (b) Gu, Z. H.; Zakarian, A. Org.
Lett. 2011, 13, 1080. (c) Peng, F.; Danishefsky, S. J. Tetrahedron Lett.
2011, 52, 2104. (d) Baitinger, I.; Mayer, P.; Trauner, D. Org. Lett. 2010,
12, 5656. (e) Lazarski, K. E.; Hu, D. X.; Stern, C. L.; Thomson, R. J. Org.
Lett. 2010, 12, 3010. (f) Nicolaou, K. C.; Dong, L.; Deng, L. J.; Talbot,
A. C.; Chen, D. Y. K. Chem. Commun. 2010, 46, 70. (g) Singh, V.;
Bhalerao, P.; Mobin, S. M. Tetrahedron Lett. 2010, 51, 3337. (h) Gong,
J.; Lin, G.; Li, C. C.; Yang, Z. Org. Lett. 2009, 11, 4770. (i) Krawczuk,
P. J.; Schone, N.; Baran, P. S. Org. Lett. 2009, 11, 4774. (j) Peng, F.; Yu,
M. L.; Danishefsky, S. J. Tetrahedron Lett. 2009, 50, 6586.
(12) Gong, J. X.; Lin, G. A.; Sun, W. B.; Li, C. C.; Yang, Z. J. Am.
Chem. Soc. 2010, 132, 16745.
(13) (a) Helm, M. D.; Sucunza, D.; Da Silva, M.; Helliwell, M.;
Procter, D. J. Tetrahedron Lett. 2009, 50, 3224. (b) Helm, M. D.; Da
Silva, M.; Sucunza, D.; Helliwell, M.; Procter, D. J. Tetrahedron 2009,
65, 10816. (c) Helm, M. D.; Da Silva, M.; Sucunza, D.; Findley, T. J. K.;
Procter, D. J. Angew. Chem., Int. Ed. 2009, 48, 9315.
(14) (a) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1989,
111, 4525. (b) RajanBabu, T. V.; Nugent, W. A. J. Am. Chem. Soc. 1994,
116, 986.
(15) (a) Fehr, C.; Galindo, J. Helv. Chim. Acta 1995, 78, 539. (b)
Tanimoto, H.; Oritani, T. Tetrahedron 1997, 53, 3527.
(16) (a) Gans€auer, A.; Pierobon, M.; Bluhm, H. Angew. Chem., Int.
Ed. 1998, 37, 101. (b) Gans€auer, A.; Bluhm, H.; Rinker, B.; Narayan, S.;
Schick, M.; Lauterbach, T.; Pierobon, M. Chem.—Eur. J. 2003, 9, 531.
(17) The stereochemistry was confirmed by single-crystal X-ray
diffraction of the corresponding desilylated compound [see the Sup-
porting Information (SI)].
(18) When a reaction employing a 2.3:1 anti/syn mixture of
diastereomers was run to 56% conversion, the unreacted starting
material was recovered as a 1.3:1 mixture, indicating that the major anti
diastereomer is reduced faster.
(19) Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky,
D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496.
(20) For excellent reviews of SmII-mediated transformations, see:
(a) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307. (b)
Edmonds, D. J.; Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371.
(c) Nicolaou, K. C.; Ellery, S. P.; Chen, J. S. Angew. Chem., Int. Ed. 2009,
48, 7140.
14967
dx.doi.org/10.1021/ja2073356 |J. Am. Chem. Soc. 2011, 133, 14964–14967