Journal of the American Chemical Society
COMMUNICATION
strongly basic anion (FÀ), the more strongly π-acidic NDIs
become promiscuous to different anions. When the thermal
anion f NDI ET process is turned OFF because of energy
1
mismatch, light can turn ON the anion f *NDI PET pathway,
generating the NDI•À radical anions. Light- and electronically gated
anion-induced NDI•À formation could be exploited in anion
sensing, artificial photosynthesis, catalysis, and molecular electronics.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental section and ad-
Figure 3. 1H NMR spectra (CD3CN, 298 K) of NDI 1 [trace i in (a)
and (b)]; (a) 1 with 1 equiv of TBAF (trace ii) showing 1•À formation
via thermal ET, as indicated by the disappearance of the NDI’s core HA
signal; and (b) 1 with excess TBACl before (trace ii) and after (trace iii)
W-lamp irradiation, showing no 1•À formation through thermal ET but
1•À formation through PET, respectively. In both cases, NOBF4 oxidation
of 1•À regenerated neutral NDI 1 [trace iii in (a) and trace iv in (b)].
b
ditional experimental and computational results. This material is
’ AUTHOR INFORMATION
Corresponding Author
regeneration of the NDI further indicates formation of the
NDI•À in the first place and provides additional evidence against
NDIÀanion covalent bond formation.
’ ACKNOWLEDGMENT
This work was supported by startup funds from the Florida
State University Research Foundation and a FYAP Award.
19F NMR titration of NDI 2 with TBAF (Figure S13) shows a
broadening and gradual disappearance of the NDI’s F signals
(À118.80 and À118.96 ppm), indicating the formation of paramag-
netic 2•À. Conversely, titration of TBAF with NDI 2 shows a
broadening and gradual upfield shift of the FÀ signal (À117.2 ppm),
indicating possible shielding of FÀ by NDI 2 as a result of anion/
NDI complex formation. The TBAF signal disappears comple-
tely with 1 equiv of NDI, indicating F• formation via the thermal
FÀ fNDI ET process. EPR spectroscopy confirmed the formation
of paramagnetic NDI•À using FÀ by displaying excellent agree-
ment between the FÀ-generated and simulated NDI•À spectra
(Figure S14).3
’ REFERENCES
(1) Njus, D.; Jalukar, V.; Zu, J.; Kelley, P. M. Am. J. Clin. Nutr. 1991,
54, 1179S.
(2) (a) Rosokha, Y. S.; Lindeman, S. V.; Rosokha, S. V.; Kochi, J. K. Angew.
Chem., Int. Ed. 2004,43, 4650. (b) Dawson, R. E.; Henning, A.; Weimann, D. P.;
Emery, D.; Ravikumar, V.; Montenegro, J.; Takeuchi, T.; Gabutti, S.; Mayor, M.;
Mareda, J.; Schalley, C. A.; Matile, S. Nat. Chem. 2010, 2, 533. (c) Chifotides,
H. T.; Schottel, B. L.; Dunbar, K. R. Angew. Chem., Int. Ed. 2010, 49, 7202.
(3) Guha, S.; Saha, S. J. Am. Chem. Soc. 2010, 132, 17674.
(4) (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303. (b) Iijima,
T.; Vignon, S. A.; Tseng, H.-R.; Jarrosson, T.; Sanders, J. K. M.;
Marchioni, F.; Venturi, M.; Apostoli, E.; Balzani, V.; Stoddart, J. F.
Chem.—Eur. J. 2004, 10, 6375.
(5) (a) Qui~nonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.;
Costa, A.; Deyꢀa, P. M. Angew. Chem., Int. Ed. 2002, 41, 3389. (b) Mascal, M.;
Yakovlev, I.; Nikitin, E. B.; Fettinger, J. C. Angew. Chem., Int. Ed. 2007,
46, 8782. (c) Schottel, B. L.; Chifotides, H. T.; Dunbar, K. R. Chem. Soc. Rev.
2008, 37, 68. (d) Berryman, O. B.; Johnson, D. W. Chem. Commun.
2009, 3143. (e) Schneider, H.-J. Angew. Chem., Int. Ed. 2009, 48, 3924.
(6) (a) Bhosale, S. V.; Jani, C. H.; Langford, S. J. Chem. Soc. Rev.
2008, 37, 331. (b) Sakai, N.; Mareda, J.; Vauthey, E.; Matile, S. Chem.
Commun. 2010, 46, 4225.
ESI-MS (Figure S15) reveals the complexes 1 FÀ (m/z1030.9),
À3
1 AcOÀ (1070.7), 1 H2PO4À (1108.7), 2 F (510.4), 2 AcOÀ
3
À3
3
3
(549.1), 2 H2PO4 (587.0), and 5 FÀ (437.1) as well as the
3
3
corresponding NDI•À radical anions. These data could be rationa-
lized by one of the following scenarios: (1) noncovalent anion/
π-acceptor interactions2,5 leading to anion f NDI ET events3
that generate NDI•À radical anions and oxidized anions (X•) or
(2) NDIÀanion covalent bond formation.5d,7 UV/Vis, NMR, and
EPR spectroscopies not only confirm the NDI•À formation via
anion f NDI ET events but also rule out NDIÀanion covalent
bond formation, as the anion-induced and electrochemically gen-
erated (anion-free) NDI•À radical anions display essentially iden-
tical spectroscopic signatures. The existence of NDI•À/X• radical
pairs (net charge = À1) could be surmised from the ESI-MS data.
However, in solutions X• species do not cause any discernible
perturbations of the spectroscopic signatures of the anion-generated
NDI•À radical anions, indicating the noncovalent nature of these
interactions before, during, and after the ET events. NOBF4 oxida-
tions of NDI•À radical anions regenerate neutral NDIs, but attempts
to capture the X• species with alkenes were inconclusive. It is plausi-
ble that the X• species may act as sacrificial agents13 that eventually
degrade by reacting with solvents, counterions, or themselves, thus
preventing the back-ET from NDI•À radical anions. B3LYP/6-31
+G** calculations showed that anions preferentially interact with the
electron-deficient imide rings of the NDIs (Figure S16).
(7) (a) Artamkina, G. A.; Egorov, M. P.; Beletskaya, I. P. Chem. Rev.
1982, 82, 427. (b) Olson, E. J.; Xiong, T. T.; Cramer, C. J.; B€uhlmann, P.
J. Am. Chem. Soc. 2011, 133, 12858.
(8) (a) Li, Y.; Flood, A. H. Angew. Chem., Int. Ed. 2008, 47, 2649.
(b) Hay, B. P.; Bryantsev, V. S. Chem. Commun. 2008, 2417.
(9) Gosztola, D.; Niemczyk, M. P.; Svec, W.; Lukas, A. S.;
Wasielewski, M. R. J. Phys. Chem. A 2000, 104, 6545.
(10) Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry:
Principles of Structure and Reactivity, 4th ed.; Harper Collins: New York,
1993; pp 332À333. A higher Lewis basicity of an anion indicates a greater
reducing ability (i.e., a more negative oxidation potential): FÀ > AcOÀ
>
H2PO4À > ClÀ > BrÀ > IÀ. Anion’s Lewis basicity is solvent-dependent.
(11) Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703.
(12) (a) de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley,
A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97,
1515. (b) Flamigni, L.; Collin, J.-P.; Sauvage, J.-P. Acc. Chem. Res. 2008, 41,857.
(13) Balzani,V.;Clemente-Lꢁeon, M.; Venturi, M.; Credi, A.; Semeraro, M.;
Tseng, H.-R.; Wenger, S.; Saha, S.; Stoddart, J. F. Aust. J. Chem. 2006, 59, 193.
In conclusion, our studies clearly demonstrate how the inter-
play between the π-acidity of the NDI and the Lewis basicity
of the anion affects the anion/NDI CT and ET interactions. While
the more weakly π-acidic NDIs display better selectivity for a
15259
dx.doi.org/10.1021/ja2055726 |J. Am. Chem. Soc. 2011, 133, 15256–15259