Page 5 of 7
Journal of the American Chemical Society
C13H27
O
* michael.willis@chem.ox.ac.uk
O
2 mol% [Rh(nbd)2]BF4
2 mol% dcpm
† These authors contributed equally to this work.
1
2
3
TBSO
Cbz
C13H27
TBSO
Cbz
H
N
acetone, 55 °C
(1.3 g scale)
N
MTM
MTM
16, 99:1 er
ACKNOWLEDGMENT
17, 94%, 99:1 er, 100% es
4
5
6
7
8
9
This work was supported by the EPSRC.
AgNO3, 2,6-lutidine
then tol. 120 °C
THF/H2O, rt
TBSO
REFERENCES
1. (a) Willis, M. C.; Chem. Rev. 2010, 110, 725. (b) Jun, C.-H.; Jo,
E.-A.; Park, J.-W. Eur. J. Org. Chem. 2007, 1869.
2. Selected examples: (a) Schedler, M.; Wang, D.-S.; Glorius, F.
Angew. Chem. Int. Ed. 2013, 52, 2585. (b) Bugaut, X.; Liu, F.;
Glorius, F. J. Am. Chem. Soc. 2011, 133, 8130.
OH
O
LiAl(OtBu)3H
TBSO
C13H27
C13H27
EtOH, -78 o
C
NH
NH
Cbz
19, 93%, >99:1 dr
Cbz
18, 91%, 98:2 er, 98% es
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
MeOH/H2O, 80 o
C
NaOH
3. Intermolecular examples: (a) Jun, C.-H.; Lee, H.; Hong, J.-B.;
Kwon, B.-I. Angew. Chem. Int. Ed. 2002, 41, 2146. (b) Gonzá-
lez-Rodríguez, C.; Pawley, R. J.; Chaplin, A. B.; Thompson, A.
L.; Weller, A. S.; Willis, M. C. Angew. Chem. Int. Ed. 2011, 50,
5134. (c) Zhang, H.-J.; Bolm, C. Org. Lett. 2011, 13, 3900. (d)
Chen, Q.-A.; Cruz, F. A.; Dong, V. M. J. Am. Chem. Soc. 2015,
137, 3157.
4. Intermolecular examples: (a) Stemmler, R. T.; Bolm, C. Adv.
Synth. Catal. 2007, 349, 1185. (b) Osborne, J. D.; Randell-Sly,
H. E.; Currie, G. S.; Cowley, A. R.; Willis, M. C. J. Am. Chem.
Soc. 2008, 130, 17232. (c) Shibata, Y.; Tanaka, K. J. Am. Chem.
Soc. 2009, 131, 12552. (d) Inui, Y.; Tanaka, M.; Imai, M.;
Tanaka, K.; Suemune, H. Chem. Pharm. Bull. 2009, 57, 1158.
(e) Coulter, M. M.; Kou, K. G. M.; Galligan, B.; Dong, V. M. J.
Am. Chem. Soc. 2010, 132, 16330. (f) Phan, D. H. T.; Kou, K. G.
M.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 16354.
OH
20 (sphingosine), 97%
HO
C13H27
NH2
O
O
O
O
TBSO
N
11
Cbz
MTM
Me
21a, 84%, 97:3 er, 97% es
TBSO
Cbz
O
O
a
O
H
TBSO
Cbz
11
Fe
N
N
MTM
MTM
16, 99:1 er
21b, 76%, 98.5:1.5 er, 99% es
O
TBSO
11
5. von Delius, M.; Le, C. M.; Dong, V. M. J. Am. Chem. Soc.
2012, 134, 15022.
6. For a review, see: Leung, J. C.; Krische, M. J. Chem. Sci. 2012,
3, 2202.
N
Cbz
MTM
21c, 49%, 97:3 er, 96% es
a
Reagents: [Rh(nbd)2]BF4 (2 mol%), dcpm (2 mol%), and
appropriately tagged terminal alkyne (1.5 equiv).
7. Rh-catalysis: (a) Marder, T. B.; Roe, D. C.; Milstein, D. Or-
ganometallics 1988, 7, 1451. (b) Roy, A. H.; Lenges, C. P.;
Brookhart, M. J. Am. Chem. Soc. 2007, 129, 2082.
8. Ru-catalysis: (a) Kondo, T.; Akazome, M.; Tsuji, Y.;
Watanabe, Y. J. Org. Chem. 1990, 55, 1286. (b) Omura, S.; Fu-
kuyama, T.; Horiguchi, J.; Murakami, Y.; Ryu, I. J. Am. Chem.
Soc. 2008, 130, 14094. (c) Shibahara, F.; Bower, J. F.; Krische,
M. J. J. Am. Chem. Soc. 2008, 130, 14120. (d) Williams, V. M.;
Leung, J. C.; Patman, R. L.; Krische, M. J. Tetrahedron, 2009,
65, 5024. See also ref 3e.
CONCLUSIONS
In conclusion, we have developed a Rh(I)-catalyzed
MTM-directed hydroacylation of alkynes using enantio-
merically enriched α-amino aldehydes. The reaction is
highly functional group tolerant, delivering a wide range
of α-amino enones in excellent yields and with almost
complete retention of enantiopurities. This transfor-
mation has been used for the crucial C–C bond-forming
step in a concise synthesis of the natural product sphin-
gosine. MTM-Free aldehydes derived from S-methyl cys-
teine, and methionine, could also be employed in efficient
intermolecular alkyne HA reactions. The demonstration
of N-MTM groups functioning as efficient chelating units
provides an additional synthetically useful motif to ex-
ploit in intermolecular HA reactions.
9. Co-catalysis: (a) Lenges, C. P.; White, P. S.; Brookhart, M. J.
Am. Chem. Soc. 1998, 120, 6965. (b) Chen, Q.-A.; Kim, D. K.;
Dong, V. M. J. Am. Chem. Soc. 2014, 136, 3772.
10. O-Chelation: (a) Kokubo, K.; Matsumasa, K.; Miura, M.;
Nomura, M. J. Org. Chem. 1997, 62, 4564. (b) Imai, M.;
Tanaka, M.; Tanaka, K.; Yamamoto, Y.; Imai-Ogata, N.;
Shimowatari, M.; Nagumo, S.; Kawahara, N.; Suemune, H. J.
Org. Chem. 2004, 69, 1144. (c) Murphy, S. K.; Petrone, D. A.;
Coulter, M. M.; Dong, V. M. Org. Lett. 2011, 13, 6216.
11. S-Chelation: (a) Willis, M. C.; McNally, S. J.; Beswick, P. J.
Angew. Chem. Int. Ed. 2004, 43, 340. (b) Willis, M. C.;
Woodward, R. L. J. Am. Chem. Soc. 2005, 127, 18012. (c) Wil-
lis, M. C.; Randell-Sly, H. E.; Woodward, R. L.; McNally, S. J.;
Currie, G. S. J. Org. Chem. 2006, 71, 5291. (d) Lenden, P.;
Entwistle, D. A.; Willis, M. C. Angew. Chem. Int. Ed. 2011, 50,
10657. For an intramolecular example, see: (e) Bendorf, H.
D.; Colella, C. M.; Dixon, E. C.; Marchetti, M.; Matukonis, A.
N.; Musselman, J. D.; Tiley, T. A. Tetrahedron Lett. 2002, 43,
7031.
ASSOCIATED CONTENT
Supporting Information
Experimental procedures and supporting characterization
data and spectra (pdf). “This material is available free of
12. N-Chelation: (a) Suggs, J. W. J. Am. Chem. Soc. 1978, 100,
640. For in situ generated N-chelation: (b) Jun, C.-H.; Lee,
D.-Y.; Lee, H.; Hong, J.-B. Angew. Chem. Int. Ed. 2000, 39,
3070; and ref 3a.
AUTHOR INFORMATION
Corresponding Author
ACS Paragon Plus Environment