10.1002/anie.201812702
Angewandte Chemie International Edition
COMMUNICATION
(c) P.-K. Chow, G. Cheng, G. S. M. Tong, W.-P. To, W.-L. Kwong, K.-H.
Low, C.-C. Kwok, C. Ma, C.-M. Che Angew. Chem. Int. Ed. 2015, 54, 2084;
(d) S. J. Kaldas, A. Cannillo, T. McCallum, L. Barriault Org. Lett. 2015, 17,
2864; (e) B. Michelet, C. Deldaele, S. Kajouj, C. Moucheron, G. Evano Org.
Lett. 2017, 19, 3576.
[4] (a) A. U. Meyer, T. Slanina, A. Heckel, B. König Chem. Eur. J. 2017, 23,
7900; (b) E. H. Discekici, N. J. Treat, S. O. Poelma, K. M. Mattson, Z. M.
Hudson, Y. Luo, C. J. Hawker, J. R. de Alaniz Chem. Commun. 2015, 51,
11705.
[5] (a) C. P. Johnston, R. T. Smith, S. Allmendinger, D. W. C. MacMillan Nature
2016, 536, 322; (b) K. Shimomaki, K. Murata, R. Martin, N. Iwasawa J. Am.
Chem. Soc. 2017, 139, 9467−9470.
[6] (a) O. Vechorkin, D. Barmaz, V. Proust, X. Hu J. Am. Chem. Soc. 2009,
131, 12078; (b) M. Bꢀrjesson, T. Moragas, R. Martin J. Am. Chem. Soc.
2016, 138, 7504−7507; (c) S.-Z. Sun, M. Börjesson, R. Martin-Montero, R.
Martin J. Am. Chem. Soc. 2018, 140, 12765; (d) X. Wu, W. Hao, K.-Y. Ye,
B. Jiang, G. Pombar, Z. Song, S. Lin J. Am. Chem. Soc. 2018; (e) S. L.
Zultanski, G. C. Fu J. Am. Chem. Soc. 2013, 135, 624; (f) D. T. Ziegler, J.
Choi, J. M. Muñoz-Molina, A. C. Bissember, J. C. Peters, G. C. Fu J. Am.
Chem. Soc. 2013, 135, 13107; (g) S. E. Creutz, K. J. Lotito, G. C. Fu, J. C.
Peters Science 2012, 338, 647; (h) Z.-X. Wang, W.-J. Guo 2014, 1; (i) F.
Alonso, I. P. Beletskaya, M. Yus Chem. Rev. 2002, 102, 4009; (j) T. C.
Atack, S. P. Cook J. Am. Chem. Soc. 2016, 138, 6139; (k) T. C. Atack, R.
M. Lecker, S. P. Cook J. Am. Chem. Soc. 2014, 136, 9521; (l) C.-T. Yang,
Z.-Q. Zhang, Y.-C. Liu, L. Liu Angew. Chem. Int. Ed. 2011, 50, 3904; (m) J.
Choi, G. C. Fu Science 2017, 356, eaaf7230.
Figure 5. Hypothetical catalytic cycle for the visible light reductive cyclization of
unactivated alkyl chlorides with tethered alkenes. HAT and HC stands for
Hydrogen Atom Abstraction and Homolytic Cleavage.
In conclusion we have developed a robust and efficient visible
light metallaphotoredox methodology for the cleavage of
unactivated Csp3-Cl bonds under mild reaction conditions. The in
situ photogeneration of low-valent cobalt and nickel complexes
bearing pentacoordinate N-based ligands was key to observe
photocatalytic activity for the cleavage of studied strong Csp3-Cl
bonds. The catalytic system was used for the visible light
reductive cyclization that allows the construction of 5-membered
carbocycles employing alkyl chlorides as convenient starting
materials with a broad functional group tolerance. We envision
that the catalyst design principles found herein will trigger the
development of novel visible light synthetic protocols that exploits
the use of currently considered of particularly unreactive
molecules, as available feedstocks and biologically active
molecules containing alkyl chlorides.
[7] Y.-R. Luo, Handbook of bond dissociation energies in organic compounds,
CRC Press, 2003.
[8] F. L. Lambert, G. B. Ingall Tetrahedron Lett. 1974, 36, 3231.
[9] (a) G. N. Schrauzer Angew. Chem. Int. Ed. 1976, 15, 417; (b) R. Scheffold,
S. Abrecht, R. Orflnski, H.-R. Ruf, P. Stamouli, O. Tinembart, L. Walder, C.
Weymuth Pure &AppI. Chem. 1989, 59, 363; (c) B. Jaun, R. K. Thauer, in
Metal Ions in Life Sciences, Vol. 2 (Eds.: A. Sigel, H. Sigel, R. K. O. Sigel),
John Wiley & Sons, Ltd., 2007, pp. 323.
[10] (a) G. N. Schrauzer, E. Deutsch J. Am. Chem. Soc. 1969, 91, 3341; (b) M.
C. Helvenston, C. E. Castro J. Am. Chem. Soc. 1992, 114, 8490.
[11] K. o. Proinsias, A. Jackowska, K. Radzewicz, M. Giedyk, D. Gryko Org.
Lett. 2018, 20, 296.
[12] (a) R. Scheffold, M. Dike, S. Dike, T. Herold, L. Walder J. Am. Chem. Soc.
1980, 102, 3642; (b) T. Inokuchi, M. Tsuji, H. Kawafuchi, S. Torii J. Org.
Chem. 1991, 56, 5945; (c) H. Kawafuchi, T. Inokuchi Tetrahedron Lett.
2002, 43, 2051; (d) S. Busato, O. Tinembart, Z. Zhang, R. Scheffold
Tetrahedron 1990, 46, 3155; (e) M. S. Mubarak, D. G. Peters J. Electroanal.
Chem. 1992, 332, 127.
[13] (a) K. Komeyama, R. Ohata, S. Kiguchi, I. Osaka Chem. Commun. 2017,
53, 6401; (b) M. E. Weiss, L. M. Kreis, A. Lauber, E. M. Carreira Angew.
Chem. Int. Ed. 2011, 50, 11125; (c) H. Shimakoshi, E. Sakumori, K. Kaneko,
Y. Hisaeda Chem. Lett. 2009, 38, 468.
Acknowledgments
[14] (a) A. Call, Z. Codolà, F. Acuña-Parés, J. Lloret-Fillol Chem. Eur. J. 2014,
20, 6171; (b) A. Call, C. Casadevall, F. Acuña-Parés, A. Casitas, J. Lloret-
Fillol Chem. Sci. 2017, 8, 4739.
[15] (a) P. Dowd, S.-C. Choi J. Am. Chem. Soc. 1987, 109, 3493; (b) A. L. J.
Beckwith, D. M. O'Shea, S. Gerba, S. W. Westwood J. Chem. Soc. Chem.
Commun. 1987, 666.
[16] Deuterium was incorporated also in α-position to the carbonyl (C2) in 66%
presumably due to an enolate type equilibrium
[17] The photocatalytic reductive cyclization of 2n performed in EtOH:CD3CN
(3:2) gave 4n without deuterium incorporated (see Figure SI.EP-19 to
SI.EP-21).
We thank the financial support from ICIQ Foundation, Cellex
Foundation, the European Research Council (ERC-CG-2014-
648304) to J. Ll.-F., MINECO (CTQ2016-80038-R), Juan de la
Cierva-Incorporación contract to A.C.. We also thank Catexel for
a generous gift of tritosyl-1,4,7-triazacyclononane. We thank Dr.
Arnau Call for preparing some cobalt complexes employed in the
screening of catalysts. We also thank Prof. R. Martin and Dr. M.
Suero for the thoughtful discussions.
[18] (a) Mishra, V.; Mishra, H.; Mukherjee, R. Eur. J. Inorg. Chem. 2009, 2973.
(b) G. N. Schrauzer, E. Deutsch, R. J. Windgassen J. Am. Chem. Soc. 1968,
90, 2441; (b) M. Dey, X. Li, R. C. Kunz, S. W. Ragsdale Biochemistry 2010,
49, 10902. (d) Anderson, T. J.; Jones, G. D.; Vicic, D. A. J. Am. Chem. Soc.
2004, 126, 8100; (e) Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136,
16588; () Sun, R.; Qin, Y.; Ruccolo, S.; Schnedermann, C.; Costentin, C.;
Nocera, D. G. J. Am. Chem. Soc. 2019, 141, 89.
[19] (a) BDE of the Co-C bond of Coenzyme B12 is estimated to be 26 kcal/mol),
see reference: Halpern, J. Science 1985, 227, 869.; (b) G. N. Schrauzer, L.
P. Lee, J. W. Sibert J. Am. Chem. Soc. 1970, 92, 2997.
Keywords: Unactivated Chloroalkanes • Visible Light •
Photoredox Catalysis • Cyclizations • Dual Catalysis
[1] (a) J. Twilton, C. C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C.
MacMillan Nature Reviews 2017, 1, 0052; (b) K. L. Skubi, T. R. Blum, T. P.
Yoon Chem. Rev. 2016, 116, 10035.
[2] (a) A. U. Meyer, T. Slanina, A. Heckel, B. König Chem. Eur. J. 2017, 23,
7900; (b) Y. Qiao, E. J. Schelter Acc. Chem. Res. 2018; (c) I. Ghosh, T.
Ghosh, J. I. Bardagi, B. König Science 2014, 346, 725; (d) K. Li, Q. Wan,
C. Yang, X.-Y. Chang, K.-H. Low, C.-M. Che Angew. Chem. Int. Ed. 2018,
57, 14129; (e) O. S. Wenger J. Am. Chem. Soc. 2018, 140, 13522.
[3] (a) J. W. Tucker, J. D. Nguyen, J. M. R. Narayanam, S. W. Krabbe, C. R. J.
Stephenson Chem. Commun. 2010, 46, 4985; (b) G. Revol, T. McCallum,
M. Morin, F. Gagosz, L. Barriault Angew. Chem. Int. Ed. 2013, 52, 13342;
[20] A. Bakac, J. H. Espenson J. Am. Chem. Soc. 1986, 108, 713.
This article is protected by copyright. All rights reserved.