Inorganic Chemistry
COMMUNICATION
distances of 1.844(4) and 1.922(5) Å, and two ZrÀNimido bond
distances of 2.139(4) and 2.109(4) Å.
2000, 4497–4498. (g) Arbaoui, A.; Homden, D.; Redshaw, C.; Wright,
J. A.; Dale, S. H.; Elsegood, M. R. J. Dalton Trans. 2009, 8911–8922.
(3) For selected reviews on imido complexes, see: (a) Wigley, D. E.
In Progress in Inorganic Chemistry; Karlin, K. D., Ed.; Interscience:
New York, 1994; Vol. 42, pp 239À482. (b) Nugent, W. A.; Mayer,
J. M. MetalÀLigand Multiple Bonds; Wiley-Interscience: New York,
1998. (c) Bolton, P. D.; Mountford, P. Adv. Synth. Catal. 2005, 347,
355–366. (d) Hazari, N.; Mountford, P. Acc. Chem. Res. 2005, 38, 839–849.
(4) (a) Lorber, C.; Choukroun, R.; Donnadieu, B. Inorg. Chem.
2002, 41, 4217–4226. (b) Lorber, C.; Choukroun, R.; Vendier, L. Eur.
J. Inorg. Chem. 2006, 4503–4518. (c) Lorber, C.; Choukroun, R.;
Vendier, L. Inorg. Chem. 2007, 46, 3192–3202. (d) Lorber, C.;
Choukroun, R.; Donnadieu, B. Inorg. Chem. 2003, 42, 673–675.
(5) Lorber C., manuscript in preparation.
In summary, the present work has established, for the first
time, the propensity of group 4 and 5 amido precursors toward
the formation of unique dimer complexes with two distinct
bridging μ-imido ligands, as well as heterobimetallic species
bridged by μ-imido ligands. It is important to note that the
selective isolation of such dimeric complexes (with either two
different imido ligands and/or two different metals) may be
regarded as unexpected considering the difficulties to obtain
homobimetallic complexes in a pure form, in particular with very
sterically demanding 2,6-diisopropylarylimido ligand.5 These
results point out a number of new avenues to explore in the
synthesis of homo- and heterodinuclear complexes.9 Studies are
underway to probe the scope of such reactions and their
applications, as well as to investigate in more detail the reasons
for the selective formation of such species.17
(6) Bradley, D. C.; Torrible, E. G. Can. J. Chem. 1963, 41, 134–138.
(7) (a) Thorn, D. L.; Nugent, W. A.; Harlow, R. L. J . Am. Chem. Soc.
1981, 103, 357–363. (b) Nugent, W. A.; Harlow, R. L. Inorg. Chem.
1979, 18, 2030–2032. (c) Nugent, W. A.; Haymore, B. L. Coord. Chem.
Rev. 1980, 31, 123–175.
(8) For selected recent examples of group 4 and 5 imido-bridged
dimers, see refs 1j and 4aÀ4c and the following: (a) Yu, X.; Chen, S.-J.;
Wang, X.; Chen, X.-T.; Xue, Z.-L. Organometallics 2009, 28, 4269–4275.
(b) Smolensky, E.; Kapon, M.; Eisen, M. S. Organometallics 2005,
23, 5495–5498. (c) Basuli, F.; Wicker, B.; Huffman, J. C.; Mindiola,
D. J. J. Organomet. Chem. 2011, 696, 235–243. (d) Szigethy, G.; Heyduk,
A. F. Inorg. Chem. 2011, 50, 125–135. (e) Chen, S.-J.; Xue, Z.-L.
Organometallics 2010, 29, 5575–5584. (f) Kaleta, K.; Arndt, P.; Beweries,
T.; Spannenberg, A.; Theilmann, O.; Rosenthal, U. Organometallics
2010, 29, 2604–2609. (g) Dubberley, S. R.; Evans, S.; Boyd, C. L.;
Mountford, P. Dalton Trans. 2005, 1448–1458.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete X-ray crystallo-
b
graphic data in CIF format for compounds 1, 2, and 5 and
synthetic details for all compounds. This material is available free
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: lorber@lcc-toulouse.fr. Phone: (+33) 5 61 33 31 44.
(9) For a recent review on multinuclear catalysts, see: Delferro, M.;
Marks, T. B. Chem. Rev. 2011, 111, 2450–2485.
(10) Conducting the reaction at 110 °C leads also to similar complex
mixtures. These complexes were shown by multinuclear NMR spec-
troscopy to be the expected complex 2, contaminated by {V(NMe2)2-
’ ACKNOWLEDGMENT
i
iPr2
(μ-NArPr )(μ-NAda)V(NMe2)(NHAr )}, and small amounts of
{V(μ-NAda)(NMe2)2}2.
2
The research was supported by the CNRS.
(11) Arney, D. J.; Bruck, M. A.; Huber, S. R.; Wigley, D. E. Inorg.
Chem. 1992, 31, 3749–3755.
(12) For vanadium imido-bridged dimers, see refs 4a and 4c and
references cited therein.
’ REFERENCES
(1) For selected examples of reactivity of the imido function, see the
following. (a) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc.
1995, 117, 974–982. (b) Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc.
1997, 119, 10696–10709. (c) Michael, F. E.; Duncan, A. P.; Sweeney,
Z. K.; Bergman, R. G. J. Am. Chem. Soc. 2005, 127, 1752–1764. (d) Hanna,
T. E.; Keresztes, I.; Lobkovsky, E.; Bernskoetter, W. H.; Chirik, P. J.
Organometallics 2004, 23, 3448–3458. (e) Bolton, P. D.; Feliz, M.;
Cowley, A. R.; Clot, E.; Mountford, P. Organometallics 2008,
27, 6096–6110. (f) Vujkovic, N.; Ward, B. D.; Maisse-Franc-ois, A.;
Wadepohl, H.; Mountford, P.; Gade, L. H. Organometallics 2007,
26, 5522–5534. (g) Guiducci, A. E.; Boyd, C. L.; Clot, E.; Mountford,
P. Dalton Trans. 2009, 5960–5979. (h) Ong, T.-G.; Yap, G. P. A.;
Richeson, D. S. Organometallics 2002, 21, 2839–2841. (i) Thomson,
R. K.; Bexrud, J. A.; Schafer, L. L. Organometallics 2006, 25, 4069–4071.
(j) Lorber, C.; Choukroun, R.; Vendier, L. Organometallics 2004,
23, 1845–1850. (k) Basuli, F.; Aneetha, H.; Huffman, J. C.; Mindiola,
D. J. J. Am. Chem. Soc. 2005, 127, 17992–17993.
(2) For selected examples of complexes with an imido function acting
as a spectactor ligand, see the following. (a) Schrock, R. R. Acc. Chem. Res.
1990, 23, 158–165. (b) Bolton, P. D.; Adams, N.; Clot, E.; Cowley, A. R.;
Wilson, P. J.; Schroder, M.; Mountford, P. Organometallics 2006,
25, 5549–5565. (c) Bigmore, H. R.; Zuideveld, M. A.; Kowalczyk,
R. M.; Cowley, A. R.; Kranenburg, M.; McInnes, E. J. L.; Mountford,
P. Inorg. Chem. 2006, 45, 6411–6423. (d) Pennington, D. A.;
Bochmann, M.; Lancaster, S. J.; Horton, P. N.; Hursthouse, M. B.
Polyhedron 2005, 24, 151–156. (e) Nielson, A. J.; Glenny, M. W.;
Rickard, C. E. F. J. Chem. Soc., Dalton Trans. 2001, 232–239. (f) Lorber,
C.; Donnadieu, B.; Choukroun, R. J. Chem. Soc., Dalton Trans.
(13) See the SI.
(14) A zirconium/hafnium complex could be prepared as well;
however, in this case, it is obtained as a mixture of two isomers.
1
(15) As shown by H NMR spectroscopy with comparison with
i
homobimetallic-related complexes {M(μ-NArPr )(NMe2)2}2(NHMe2)x
2
complexes (M = Ti, Zr, Hf). The crystal structure of 4 could not be fully
resolved because of crystallographic problems (see ref 13).
(16) For a definition of τ, see: Addison, A. W.; Rao, T. N.; Reedijk, J.;
van Rijn, J. V. J. Chem. Soc., Dalton Trans. 1984, 1349–1356.
(17) In preliminary mechanistic studies, scrambling reactions be-
tween two homobimetallic complexes did not lead to the interchanged
i
products (e.g., scrambling {Ti(μ-NArPr )(NMe2)2}2 with {Ti(μ-NAda)-
2
(NMe2)2}2 caused no formation of 1 at room temperature). In agreement
with this observation, we presume that R1NH2 and R2NH2 react with
M1(NMe2)4 to form transient M1(NMe2)2(NHR1)(NHR2), which then is
able to act as a chelating metalladiamine and react with a further
M2(NMe2)4.
9929
dx.doi.org/10.1021/ic201466f |Inorg. Chem. 2011, 50, 9927–9929