V. Garaliene et al. / European Journal of Medicinal Chemistry 46 (2011) 4441e4447
4447
ꢀ
[23] A. Zahradnikova, I. Minarovic, I. Zahradnik, Competitive and cooperative
effects of Bay K 8644 on the L-type calcium channel current inhibition by
calcium channel antagonists, J. Pharmacol. Exp. Ther. 322 (2007)
638e645.
Acknowledgements
This work has been supported by the Institute of Cardiology at
the Medical Academy of the Lithuanian University of Health
Sciences, PhD research programs related to medicine-07B.
[24] S. Ichida, S. Ariyoshi, T. Fujisue, T. Wada, T. Akimoto, Effects of calcium channel
agonists (BAY K 8644, CGP28392 and YC-170) on 45Ca uptake by rat uterine
segments, Jpn. J. Pharmacol. 56 (1991) 397e402.
[25] L.H. Opie, Potassium channels: physiological, pathological and protective
roles, J. Clin. Basic Cardiol. 2 (1999) 5e7.
[26] J.A.F. Vicente, G. Duburs, V. Klusa, J. Briede, L. Klimaviciusa, A. Zharkovsky,
M.A.S. Fernandes, Cerebrocrast as a neuroprotective, anti-diabetic and mito-
References
[1] M.F. Navedo, G.C. Amberg, M. Nieves, J.D. Molkentin, L.F. Santana, Mechanism
underlying heterogeneous Ca2þ sparklet activity in arterial smooth muscle,
J. Gen. Physiol. 127 (2006) 611e622.
chondrial bioenergetic effector:
a putative mechanism of action. in:
A.J.M. Moreno, P.J. Oliveira, C.M. Palmeira (Eds.), Mitochondrial Pharmacology
and Toxicology. Publishing Inc., Transworld Reseach, Network, Kerala, 2006,
pp. 185e189.
[2] L.F. Santana, M.F. Navedo, Molecular and biophysical of Ca2þ sparklets in
smooth muscle, J. Mol. Cell. Cardiol. 47 (2009) 436e444.
[3] I. Grgic, B.J. Kaistha, J. Hoyer, R. Köhler, Endothelial C2þ-activated Kþ channels
in normal and impaired EDHF-dilator responses e relevance to cardiovascular
pathologies and drug discovery, Br. J. Pharmacol. 157 (2009) 509e526.
[4] W.F. Jackson, Potassium channels in the peripheral microcirculation, Micro-
circulation 12 (2005) 113e127.
[27] H. Köppel, S. Vidalli, R. Schöllnast, Specific dihydropyridines may affect gating
properties of certain subsets of adenosin-triphosphate-dependent K-channels
in myocardial tissue and hence modulate its response to ischemia, J. Clin.
Basic Cardiol. 3 (2000) 133e134.
[28] W. Haverkamp, G. Breithardt, A.J. Camm, M.J. Janse, M.R. Rosen,
C. Antzelevitch, D. Escante, M. Franz, M. Malik, A. Moss, R. Shah, The potential
for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs:
clinical and regulatory implications report on a policy conference of the
European Society of cardiology, Cardiovasc. Res. 47 (2000) 219e233.
[29] X. Yan, H. Zhou, J. Zhang, C. Shi, X. Xie, Y. Wu, C. Tian, Y. Shen, J. Long,
Molecular mechanism of inward rectifier potassium channel 2.3 regulation by
tax-interacting protein-1, J. Mol. Biol. 392 (2009) 967e976.
[5] M. Bechem, M. Schramm, Calcium-agonists, J. Mol. Cell. Cardiol. 19 (1987) 63e75.
[6] H. Affolter, R. Coronado, Agonist BAY-K 8644 and CGP-28392 open calcium
channels reconstituted from skeletal muscle transverse tubules, Biophys. J. 48
(1985) 341e347.
[7] H. Satoh, H. Hayashi, L.A. Blatter, D.M. Bers, BayK 8644 increases resting
calcium spark frequency in ferret ventricular myocytes, Heart Vessels (1997)
58e61 Suppl. 12.
[8] M.J. Alonso, I. Rico, M. Salaices, J. Marin, Effects of the Ca agonists Bay K 8644
and CGP 28392 on vascular smooth muscle tone, Gen. Pharmacol. 20 (1989)
827e831.
[9] E.O. Mikkelsen, G. Costa, N.C. Nyborg, Influence of endothelium on the
response to calcium agonists, calcium, potassium and noradrenaline in rat
aorta, Pharmacol. Toxicol. 62 (1988) 22e28.
[10] S. Papaioannon, S. Paunzer-Knodler, P.C. Yang, Calcium uptake studies of 1,4-
dihydropyridine agonists into rabbit aortic smooth muscle cells in culture, Life
Sci. 44 (1989) 1751e1758.
[11] M.S. Fernandez-Alfonso, M.J. Alonso, I. Rico, M. Salaices, C.F. Sanchez-Ferrer,
J. Marin, Effects of the Ca2þ agonists, Bay K 8644 and CGP 28392, on isolated
cat cerebral and peripheral arteries, Brain Res. 474 (1988) 147e154.
[12] G. Franckowiak, R. Grosser, G. Thomas, M. Schramm, R. Gross, 1988. Mixtures
of optically active nitrodihydropyridines active on the circulatory system,
U.S.Patent 4764516.
[30] C.G. Nichols, A.N. Lopatino, Inward rectifier potassium channels, Annu. Rev.
Physiol. 59 (1997) 171e191.
[31] G.R. Li, M.Q. Dong, Pharmacology of cardiac potassium channels, Adv. Phar-
macol. 59 (2010) 93e134.
[32] J. Tamargo, R. Caballero, R. Gómez, C. Valenzuela, E. Delpon, Pharmacology of
cardiac potassium channels, Cardiovasc. Res. 64 (2004) 9e33.
[33] J.H. Cheng, I. Kodama, Two components of delayed rectifier Kþ current in
heart: molecular basis, function diversity, and contribution to repolarization,
Acta Pharmacol. Sin. 25 (2004) 137e145.
[34] H. Satoh, H. Katoh, P. Velez, M. Fill, D.M. Bers, Bay k 8644 increases resting
Ca2þ spark frequency in ferret ventricular myocytes independent of Ca
influx: contrast with caffeine and ryanodine effects, Circ. Res. 83 (1998)
1192e1204.
[35] U. Mackiewicz, K. Emanuel, B. Lewartowski, Agonist of dihydropyridine
receptors, Bay k 8644 depresses excitation-contraction coupling in myocytes
of guinea pig hearts, J. Physiol. Pharmacol. 52 (2001) 459e469.
[36] E. Polakova, A. Zahradnikova, J. Pavelkova, I. Zahradnik, A. Zahradnikova, Local
calcium release activation by DHPR calcium channel openings in rat cardiac
myocytes, J. Physiol. 586 (2008) 3839e3854.
[13] K. Goerlitzer, E. Schmidt, Darstellung und chemische charakterisierung des
calcium-agonisten BAY-K 8644 und der nebenprodukte bei der Hantzch-
synthesis, Arch. Pharm. 324 (1991) 785e796.
[14] I.P. Skrastinsh, V.V. Kastron, R.O. Vitolin, G.Ya. Dubur, M.I. Stivrinya,
K.A. Kaidaka, Synthesis and pharmacological activity of furo-1,4-
dihydropyridines, Pharm. Chem. J. 23 (11) (1989) 893e896.
[15] A. Sobolev, M.C. Franssen, B. Vigante, B. Cekavicus, R. Zhalubovskis,
H. Kooijman, A.L. Spek, G. Duburs, A. Groot, Effects of acyl chain length and
branding on the enantioselectivity of Candida rugosa lipase in the kinetic
resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine
3,5-diester, J. Org. Chem. 67 (2002) 401e410.
[16] A. Krowezynsky, L. Kozerski, A general approach to aliphatic 2-nitroenamines,
Synthesis Nr. 6 (1983) 489.
[17] P. Pagliaro, N. Paolocci, T. Isoda, W.F. Saavedra, G. Sunagawa, D.A. Kass,
Reversal of glibenclamide-induced coronary vasoconstriction by enhanced
perfusion pulsatility: possible role for nitric oxide, Cardiovasc. Res. 45 (2000)
1001e1009.
[18] J. Zeng, K.R. Laurita, D.S. Rosenbaum, Y. Rudy, Two components of the delayed
rectifier Kþ current in ventricular myocytes of guinea pig type, Circ. Res. 77
(1995) 140e152.
[19] R.J. Rivers, T.W. Hein, C. Zhang, L. Kuo, Activation of barium-sensitive inward
rectifier potassium channels mediates remote dilatation of coronary arteri-
oles, Circulation 104 (2001) 1749e1753.
[20] P. Varma, X. Qi, D. Newman, P. Dorian, Combination IK1 and IKr channel
blockade: no additive lowering of the defibrillation threshold, Can. J. Physiol.
Pharmacol. 80 (2002) 22e30.
[21] G. Duburs, B. Vigante, A. Plotniece, A. Krauze, A. Sobolev, J. Briede,
L. Klimaviciusa, A. Zharkovsky, Dihydropyridine derivatives as bioprotectors,
Chem. Today 26 (2008) 68e70.
[37] H. Katoh, K. Schlotthauer, D.M. Bers, Transmission of information from cardiac
dihydropyridine receptor to ryanodine receptor: evidence from BayK 8644
effects on resting Ca2þ sparks, Circ. Res. 87 (2000) 106e111.
[38] H.A. Coleman, M. Tare, H.C. Parkington, Endothelial potassium channels,
endothelium-dependent hyperpolarization and the regulation of vascular
tone in health and disease, Clin. Exp. Pharmacol. Physiol. 31 (2004) 641e649.
[39] M. Feletou, Calcium-activated potassium channels and endothelial dysfunc-
tion: therapeutic options? Br. J. Pharmacol. 156 (2009) 545e562.
[40] Y. Shao, R. Liew, B. Guan, P.E.H. Wong, W.S.N. Shim, Y. Chua, G. He, Different
expression of large-conductance calcium-activated Kþ channels in human
internal mammary and radial arteries, Cardiovasc. Res. 89 (2011) 329e335.
[41] J. Ledoux, A.D. Bonev, M.T. Nelson, Ca2þ-activated Kþ channels in murine
endothelial cells: block by intracellular calcium and magnesium, J. Gen.
Physiol. 131 (2008) 125e135.
[42] J.-Z. Sheng, A.P. Braun, Small- and intermediate-conductance Ca2þ-activated
Kþ channels directly control agonist-evoked nitric oxide synthesis in human
vascular endothelial cells, Am. J. Physiol. Cell Physiol. 293 (2007) C458eC467.
[43] M.S. Taylor, A.D. Bonev, P.T. Gross, D.M. Eckman, J.E. Brayden, C.T. Bond,
J.P. Adelman, M.T. Nelson, Altered expression of small-conductance
Ca2þ-activated Kþ (SK3) channels modulates arterial tone and blood pres-
sure, Circ. Res. 93 (2003) 124e131.
[44] Ya. Stradin, L. Baumane, R. Gavars, B. Vigante, G. Duburs, Free radicals at
electrochemical reduction of 3-nitro-1,4-dihydropyridine derivatives, Chem.
Heterocycl. Comp. (Engl. Ed.) 3 (1995) 355e364.
ꢀ
[45] V. Garaliene, L. Labanauskas, A. Brukstus, Effect of 1-Acyl-5,6-dialkoxy-2-
aklylthiobenzo[d]imidazoles on the action potential duration and isometric
contraction in guinea pig atrium activated by carbachol and guinea heart
papillary muscles, Arzneim. -Forsch/Drug Res. 56 (2006) 282e287.
[22] P. Artigas, G. Ferreira, N. Reyes, G. Brum, G. Pizarro, Effects of the enantiomers
of BayK 8644 on the charge movement of L-type Ca channels in guinea-pig
ventricular myocytes, J. Membr. Biol. 193 (2003) 215e227.