Journal of the American Chemical Society
Article
two C7″ diastereomeric trioxacarins C (5a and 5b). Reaction of
II with excess 25a or 25b in the presence of Ph3PAuOTf
catalyst and 4 Å molecular sieves in CH2Cl2 at 0 °C furnished
glycoside 26a or 26b in 92% and 93% yield, respectively, and
α:β > 20:1 dr (anomeric proton of the α-anomer of 26a δH‑1″
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and compound characterization
3
5.77 ppm, dd, J = 3.7, 2.0 Hz; anomeric proton of the α-
anomer of 26b δH‑1″ 5.79 ppm, d, 3J = 4.2 Hz; see the SI for the
1
expanded H NMR region of these signals). Reaction of 26a
AUTHOR INFORMATION
Corresponding Author
Notes
■
with ethylene glycol and NaH resulted in the cleavage of both
the carbonate and acetate groups from the growing molecule,
liberating all three hydroxyl groups (see Scheme 7a).
Acetylation of the resulting compound (Ac2O, DMAP, py)
then led to bisacetate 27a in 73% overall yield. The latter
compound was treated with DDQ, causing cleavage of the PMB
group and furnishing intermediate glycosyl acceptor 28a (83%
yield). Reaction of 28a with glycosyl donor 15 in the presence
of Ph3PAuNTf2 catalyst and 4 Å molecular sieves in CH2Cl2
furnished protected trioxacarcin C (29a) (66% yield, anomeric
protons δH‑1″ 5.72 ppm, apparent dd, 3J = 2.5, 2.5 Hz and δH‑1′
5.35, apparent dd, 3J = 3.0, 3.0 Hz; see the SI for the expanded
1H NMR region of these signals), from which C7″-(R)-
trioxacarcin C (5a) was obtained upon sequential treatment
with K2CO3 in MeOH (selective deacetylation due to different
steric environments) and Et3N·3HF (desilylation) in 68%
overall yield. A similar sequence starting from the C7″-epimeric
substrate 26b and the same carbohydrate donor (i.e., 15) led to
the formation of C7″-(S)-trioxacarcin C (5b) via intermediates
26b−29b in similar yields, as shown in Scheme 7b. That this
series of compounds were formed predominantly as the α-
anomers (α:β > 20:1 anomeric ratio) as expected was
confirmed by their 1H NMR spectra, which exhibited the
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Cancer Prevention & Research
Institute of Texas (CPRIT), the Welch Foundation (Grant C-
1819), and Rice University. Q.C. and B.Q. gratefully acknowl-
edge Chongqing University for postdoctoral fellowships. H.S.
gratefully acknowledges the China Scholarship Council for
financial support. We thank Drs. L. B. Alemany and Q.
Kleerekoper (Rice University) for NMR spectroscopic
assistance and Drs. C. Pennington (Rice University) and I.
Riddington (University of Texas at Austin) for mass
spectrometric assistance.
REFERENCES
■
(1) (a) Tomita, F.; Tamaoki, T.; Morimoto, M.; Fujimoto, K. J.
Antibiot. 1981, 34, 1519. (b) Tamaoki, T.; Shirahata, K.; Iida, T.;
Tomita, F. J. Antibiot. 1981, 34, 1525. (c) Maskey, R. P.; Helmke, E.;
Kayser, O.; Fiebig, H. H.; Maier, A.; Busche, A.; Laatsch, H. J. Antibiot.
2004, 57, 771. (d) Shirahata, K.; Kaisha, T. U.S. Patent 4,459,291,
1984. (e) Tomita, F.; Tamaoki, T.; Shirahata, K.; Iida, T.; Morimoto,
M.; Fujimoto, K. EP 0,029,309, 1984. (f) Tomita, F.; Tamaoki, T.;
Shirahata, K.; Iida, T.; Motimoto, M.; Fujimoto, K. U.S. Patent
4,511,560, 1985.
(2) (a) Fujimoto, K.; Morimoto, M. J. Antibiot. 1983, 36, 1216.
(b) Maiese, W. M.; Labeda, D. P.; Korshalla, J.; Kuck, N.; Fantini, A.
A.; Wildey, M. J.; Thomas, J.; Greenstein, M. J. Antibiot. 1990, 43, 253.
(c) Cassidy, J.; Graham, M. A.; Huinink, W. T. B.; McDaniel, C.;
Setanoians, A.; Rankin, E. M.; Kerr, D. J.; Kaye, S. B. Cancer
Chemother. Pharmacol. 1993, 31, 395.
(3) Sun, D.; Hansen, M.; Clement, J. J.; Hurley, L. H. Biochemistry
1993, 32, 8068.
́
(4) (a) Maskey, R. P.; Sevvana, M.; Uson, I.; Helmke, E.; Laatsch, H.
Angew. Chem., Int. Ed. 2004, 43, 1281. (b) Fitzner, A.; Frauendorf, H.;
Laatsch, H.; Diederichsen, U. Anal. Bioanal. Chem. 2008, 390, 1139.
(5) Pfoh, R.; Laatsch, H.; Sheldrick, G. M. Nucleic Acids Res. 2008, 36,
3508.
3
anticipated J coupling constants for their anomeric protons
(26b δH‑1″ 5.79 ppm, d, 3J = 4.2 Hz; 29b δH‑1″ 5.73 ppm, d, 3J =
4.0 Hz and δH‑1′ 5.35, apparent dd, 3J = 3.1, 3.1 Hz).
Comparison of the 1H and 13C NMR spectroscopic data for the
two synthetic trioaxacarcins C (5a and 5b) revealed the identity
of the naturally occurring trioxacarcin C as structure 5b
1
possessing the C7″-(S)-configuration (see the SI for H and
13C NMR spectral comparisons).1e This finding leads to the
designation of 5a as C7″-epi-trioxacarcin C. Synthetic
trioxacarcin C (5b) exhibited 1H and 13C spectral data identical
to those reported for the natural product (see the SI).
3. CONCLUSION
(6) Propper, K.; Dittrich, B.; Smaltz, D. J.; Magauer, T.; Myers, A. G.
̈
The herein-described total syntheses of trioxacarcins DC-45-A1
(2), A (3), D (4), C (5b), and C7″-epi-C (5a) provide access
to these potent antitumor agents and open the way for the
synthesis of other members of the class, natural or designed.
The high yields and stereoselectivities of the gold-catalyzed
glycosylation reactions are particularly impressive given the
complexity and sensitivity of the substrates employed,
suggesting their potential for applications in other challenging
situations. The described chemistry is expected to facilitate the
design and synthesis of more or less complex analogues of the
trioxacarcins aiming at highly potent cytotoxic agents as
required for ADCs and other drug delivery systems for targeted
cancer chemotherapy. Our studies toward this goal will be
reported in due course.
Bioorg. Med. Chem. Lett. 2014, 24, 4410.
(7) (a) Sievers, E. L.; Senter, P. D. Annu. Rev. Med. 2013, 64, 15.
(b) Perez, H. L.; Cardarelli, P. M.; Deshpande, S.; Gangwar, S.;
Schroeder, G. M.; Vite, G. D.; Borzilleri, R. M. Drug Discovery Today
2014, 19, 869. (c) Chari, R. V. J.; Miller, M. L.; Widdison, W. C.
Angew. Chem., Int. Ed. 2014, 53, 3796.
(8) (a) Polu, K. R.; Lowman, H. B. Expert Opin. Biol. Ther. 2014, 14,
1049. (b) Cohen, R.; Vugts, D. J.; Visser, G. W. M.; Stigter-van
Walsum, M.; Bolijn, M.; Spiga, M.; Lazzari, P.; Shankar, P. S.; Sani, M.;
Zanda, M.; van Dongen, G. A. M. S. Cancer Res. 2014, 74, 5700.
(9) (a) Suami, T.; Nakamura, K.; Hara, T. Bull. Chem. Soc. Jpn. 1983,
56, 1431. (b) Konig, C. M.; Harms, K.; Koert, U. Org. Lett. 2007, 9,
̈
4777.
̌
(10) (a) Svenda, J.; Hill, N.; Myers, A. G. Proc. Natl. Acad. Sci. U. S. A.
2011, 108, 6709. (b) Magauer, T.; Myers, A. G. Org. Lett. 2011, 13,
̌
5584. (c) Smaltz, D. J.; Svenda, J.; Myers, A. G. Org. Lett. 2012, 14,
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX