Different heteroatomic and C-nucleophiles have been used
for the ring-opening of aziridines,6ꢀ8 and a number of
examples of aziridine-mediated heterocycle syntheses have
also been reported.9
Recently, we have reported the Lewis acid (LA)-mediated
ring-opening of racemic and enantiopure 2-aryl-N-tosyla-
ziridines by a number of nucleophiles to generate racemic
and nonracemic products in high enantiomeric excess.10 We
have demonstrated that the LA-mediated nucleophilic ring-
opening of 2-aryl-N-tosylaziridines does proceed through
an SN2-type pathway instead of a stable 1,3-dipolar inter-
mediate as invoked earlier.
Figure 1. Selected biologically active 1,2,3,4-tetrahydro-
quinoxalines.
In continuation of our research activities in this area, we
have developed a simple strategy for the synthesis of
1,2,3,4-tetrahydroquinoxalines with excellent yields (up
to 85%) and enantiomeric excess (ee) (up to >99%) via
the regio- and stereoselective ring-opening of aziridines by
2-bromo anilines followed by palladium-catalyzed intra-
molecular CꢀN cyclization. We report herein our pre-
liminary results as a communication.
Palladium-catalyzed amination reactions made a large
contribution in organic synthesis for the construction of
CarylꢀN bonds.5 We envisioned that substituted 1,2,3,4-
tetrahydroquinoxalines could easily be accessed by the
ring-opening of aziridines with 2-bromo anilines followed
by Pd-catalyzed intramolecular CꢀN bond formation.
(6) (a) Minakata, S.; Okada, Y.; Komastu, M. Org. Lett. 2005, 7,
3509. (b) Couty, F.; Evano, G.; Prim, D. Tetrahedron Lett. 2005, 46,
2253. (c) Hu, X. E. Tetrahedron 2004, 60, 2701 and references therein.
Scheme 1. Regioselective Ring-Opening of 1a with 2-Bromo-
aniline 2a
ꢁ
(d) Forbeck, E. M.; Evans, C. D.; Gilleran, J. A.; Li, P.; Joullie, M. M.
ꢁ
ꢁ
J. Am. Chem. Soc. 2007, 129, 14463. (e) Ochoa-Teran, A.; Concellon,
ꢁ
J. M.; Rivero, I. A. ARKIVOC 2009, No. ii, 288. (f) Concellοn, J. M.;
Bernad, P. L.; Suarez, J. R. J. Org. Chem. 2005, 70, 9411. (g) Minakata,
ꢁ
S.; Hotta, T.; Oderaotoshi, Y.; Komatsu, M. J. Org. Chem. 2006, 71,
ꢁ
7471. (h) Joullie, M. M.; Kelley, B. T. Org. Lett. 2010, 12, 4244. (i) De
Rycke, N.; David, O.; Couty, F. Org. Lett. 2011, 13, 1836. (j) D’hooghe,
M.; Kenis, S.; Vervisch, K.; Lategan, C.; Smith, P. J.; Chibale, K.; De
Kimpe, N. Eur. J. Med. Chem. 2011, 46, 579. (k) Yadav, J. S.; Satheesh,
ꢁ
G.; Murthy, C. V. S. R. Org. Lett. 2010, 12, 2544. (l) Concellοn, J. M.;
Rodriguez-Solla, H.; Amo, V.; Diaz, P. J. Org. Chem. 2010, 75, 2407. (m)
Zeng, F.; Alper, H. Org. Lett. 2010, 12, 5567. (n) Karikomi, M.;
D’hooghe, M.; Verniest, G.; De Kimpe, N. Org. Biomol. Chem. 2008,
6, 1902. (o) Catak, S.; D’hooghe, M.; De Kimpe, N.; Waroquier, M;
Speybroeck, V. V. J. Org. Chem. 2010, 75, 885. (p) Singh, G. S.;
D’hooghe, M.; De Kimpe, N. Chem. Rev. 2007, 107, 2080. (q) Bhadra,
S.; Adak, L.; Samanta, S.; Islam, A. K. M. M.; Mukherjee, M.; Ranu,
B. C. J. Org. Chem. 2010, 75, 8533. (r) Bera, M.; Pratihar, S.; Roy, S.
J. Org. Chem. 2011, 76, 1475. (s) D’hooghe, M.; Rottiers, M.; Kerkaert, I.;
De Kimpe, N. Tetrahedron 2005, 61, 8746. (t) D’hooghe, M.; Waterinckx,
A.; Vanlangendonck, T.; De Kimpe, N. Tetrahedron 2006, 62, 2295.
(7) (a) Minakata, S.; Murakami, Y.; Satake, M.; Hidaka, I.; Okada,
Y.; Komatsu, M. Org. Biomol. Chem. 2009, 7, 641. (b) Ding, C.-H.; Dai,
L.-X.; Hou, X.-L. Tetrahedron 2005, 61, 9586. (c) D’hooghe, M.; De
Kimpe, N. Chem. Commun. 2007, 1275. (d) D’hooghe, M.; Kerkaert, I.;
Rottiers, M.; De Kimpe, N. Tetrahedron 2005, 60, 3637.
First, we explored the ring-opening of racemic 2-phenyl-
N-tosylaziridine (1a) with 2-bromo aniline (2a) under vary-
ing reaction conditions to afford the corresponding racemic
ring-opened product 3a (Scheme 1). When 1a was treated
with 2-bromo aniline (2a) in the presence of Cu(OTf)2 as the
LA in DCM medium, 3a was produced in 80% yield
(Scheme 1) within 2 h. The reaction was found to be suc-
cessful with other LAs (Zn(OTf)2, Sc(OTf)3, and Yb(OTf)3)
and under solvent free conditions.11 Interestingly, the best
yield of 3a was obtained when 4 equiv of 2-bromoaniline 2a
were used in the absence of any LA and organic solvent.
(Scheme 1; see Table S1, Supporting Information).
Next, we evaluated the palladium-catalyzed cyclization
of 3a to form the product 4a under diverse reaction
conditions, and the results are shown in Table 1. Initially,
we used 10 mol % of palladium catalyst, 20 mol % of the
ligand (PPh3), and K2CO3 as the base (Scheme 2, Table 1,
entry 2). K2CO3 was found tobe a better base than Cs2CO3
(Table 1, entry 1 vs 2), and toluene was a better solvent
than DMF (Table 1, entry 2 vs 3). When we reduced the
amount of catalyst (5 mol %) and ligand (10 mol %) to
(8) (a) Blyumin, E. V.; Gallon, H. J.; Yudin, A. K. Org. Lett. 2007, 9,
4677. (b) Moss, T. A.; Fenwick, D. R.; Dixon, D. J. J. Am. Chem. Soc.
~
2008, 130, 10076. (c) Paixao, M. W.; Nielsen, M.; Jacobsen, C. B.;
Jørgensen, K. A. Org. Biomol. Chem. 2008, 6, 3467. (d) Enders, D.;
Janeck, C. F.; Raabe, G. Eur. J. Org. Chem. 2000, 3337. (e) Xu, Y; Lin,
L.; Kanai, M.; Matsunaga, S; Shibasaki, M. J. Am. Chem. Soc. 2011,
133, 5791.
(9) For some recent examples of aziridine mediated heterocycle
€ €
synthesis, see: (a) Kiss, L.; Mangelinckx, S.; Fulop, F.; De Kimpe, N.
Org. Lett. 2007, 9, 4399. (b) Ghorai, M. K.; Nanaji, Y.; Yadav, A. K.
Org. Lett. 2011, 13, 4256. (c) Du, X.; Yang, S.; Yang, J.; Liu, Y.
Chem.;Eur. J. 2011, 17, 4981. (d) Wu, Y.-C.; Zhu, J. Org. Lett. 2009,
11, 5558. (e) Baktharaman, S.; Afagh, A.; Vandersteen, A.; Yudin, A. K.
Org. Lett. 2010, 12, 240. (f) Prasad, D. J. C.; Sekar, G. Org. Biomol.
ꢁ
Chem. 2009, 7, 5091. (g) Bisol, T. B.; Bortoluzzi, A. J.; Sa, M. M. J. Org.
Chem. 2011, 76, 948. (h) Wang, J.-Y.; Guo, X.-F.; Wang, D.-X.; Huang,
Z.-T.; Wang, M.-X. J. Org. Chem. 2008, 73, 1979. (i) Wang,L.;Liu,Q.-B.;
Wang, D.-S.; Li, X.; Han, X.-W.; Xiao, W.-J.; Zhou, Y.-G. Org. Lett.
2009, 11, 1119. (j) Hong, D.; Lin, X.; Zhu, Y.; Lei, M.; Wang, Y. Org.
Lett. 2009, 11, 5678. (k) Rao, R. K.; Naidu, A. B.; Sekar, G. Org. Lett.
2009, 11, 1923. (l) D’hooghe, M.; Aelterman, W.; De Kimpe, N. Org.
Biomol. Chem. 2009, 7, 135. (m) Brabandt, W. V.; Dejaegher, Y.;
Landeghem, R. V.; De Kimpe, N. Org. Lett. 2006, 8, 1101. (n)
(10) (a) Ghorai, M. K.; Tiwari, D. P. J. Org. Chem. 2010, 75, 6173.
(b) Ghorai, M. K.; Kumar, A.; Tiwari, D. P. J. Org. Chem. 2010, 75, 137.
(c) Ghorai, M. K.; Shukla, D.; Das, K. J. Org. Chem. 2009, 74, 7013.
(d) Ghorai, M. K.; Das, K.; Shukla, D. J. Org. Chem. 2007, 72, 5859.
(e) Ghorai, M. K.; Kumar, A.; Das, K. Org. Lett. 2007, 9, 5441.
(f) Ghorai, M. K.; Das, K.; Kumar, A. Tetrahedron Lett. 2007, 48,
4373. (g) Ghorai, M. K.; Ghosh, K. Tetrahedron Lett. 2007, 48, 3191.
(h) Ghorai, M. K.; Das, K.; Kumar, A. Tetrahedron Lett. 2009, 50, 1105.
(11) See the Supporting Information for details.
ꢀ
ꢀ
ꢀ
Zukauskaite, A.; Mangelinckx, S.; Buinauskaite, V.; Sackus, A.; De
Kimpe, N. Amino Acids 2011, 41, 541.
Org. Lett., Vol. 13, No. 22, 2011
5973