RSC Advances
Paper
activity such as the direct synthesis of valuable aldehydes 19 M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li and
through the oxidation of alcohols in a highly chemoselective S. A. Hackney, J. Mater. Chem., 2005, 15, 2257–2267.
fashion. This new synthetic strategy for low dimensional 20 O. Giraldo, S. L. Brock, W. S. Willis, M. Marquez and
manganese oxide materials could be exploited for the fabrica- S. L. Suib, J. Am. Chem. Soc., 2000, 122, 9330–9331.
tion of novel inorganic materials with controlled superstruc- 21 S. K. Nayak and P. Jena, Phys. Rev. Lett., 1998, 81, 2970–2973.
tures and unusual functionalities. This unprecedented catalytic 22 E. Lidstrom and O. Hartmann, J. Phys.: Condens. Matter,
activity of Mn2O3 nanorods provides new prospects and
2000, 12, 4969–4974.
perspectives in catalysis for the pursuance of novel organic 23 J. E. Pask, D. J. Singh, I. I. Mazin, C. S. Hellberg and J. Kortus,
transformations to afford functional molecules for our highly
Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 64, 024403.
ˇ
ˇ ´
demanding modern society.
24 I. Djerdj, D. Arcon, Z. Jaglicic and M. Niederberger, J. Phys.
Chem. C, 2007, 111, 3614–3623.
25 R. Ma, Y. Bando, L. Zhang and T. Sasaki, Adv. Mater., 2004,
16, 918–922.
Acknowledgements
We gratefully acknowledge nancial support from DBT, New 26 F. Y. Cheng, J. A. Shen, B. Peng, Y. D. Pan, Z. L. Tao and
Delhi (project no. BT/277/NE/TBP/2013) and DST, Nanomission, J. Chen, Nat. Chem., 2011, 3, 79–84.
Govt. of India (project no. SR/NM/NS-29/2010). We are also 27 Y. Oaki and H. Imai, Angew. Chem., Int. Ed., 2007, 119, 5039–
thankful to CRNN, University of Calcutta for providing micro-
scope facility to analyse the Mn2O3-microrods.
5043.
28 H. M. Zang and Y. Teraoka, Catal. Today, 1989, 6, 155–162.
29 B. Ammundsen and J. Paulsen, Adv. Mater., 2001, 13, 943–
956.
References
30 Y. F. Chang and J. C. McCarty, Catal. Today, 1996, 30, 163–
1 G. Rothenberg, Catalysis, Wiley, VHC, Weinheim, 2008.
2 M. Peplow, Nature, 2013, 495, S10–S11.
3 S. Ghosh, S. Khamarui, K. S. Gayen and D. K. Maiti, Sci. Rep.,
2013, 3, 2987.
170.
31 P. Serp, K. Philippot, G. A. Somorjai and B. Chaudret,
Nanomaterials in Catalysis, Wiley-VCH, Winheim, Germany,
2013.
4 M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, 32 L. Hu, Q. Peng and Y. Li, J. Am. Chem. Soc., 2008, 130, 16136–
A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson and
R. M. Lambert, Nature, 2008, 454, 981–984.
5 K. S. Gayen, T. Sengupta, Y. Saima, A. Das, D. K. Maiti and
A. Mitra, Green Chem., 2012, 14, 1589–1592.
6 V. Polshettiwar, J.-M. Basset and D. Astruc, ChemSusChem,
2012, 5, 6–8.
7 B. C. Ranu, D. Saha, D. Kundu and N. Mukherjee, in
16137.
33 A. Tokeer, K. V. Ramanujachary, S. E. Loand and G. Ashok,
J. Mater. Chem., 2004, 14, 3406–3410.
34 Y.-F. Han, F. Chen, Z. Zhong, K. Ramesh, L. Chen and
E. Widjaja, J. Phys. Chem. B, 2006, 110, 24450–24456.
35 C. Hongmin and H. Junhui, J. Phys. Chem. C, 2008, 112,
17540–17545.
Nanocatalysis: Synthesis and Applications of Aryl Carbon- 36 S. Gnanam and V. Rajendran, J. Sol-Gel Sci. Technol., 2011,
Heteroatom Coupling Reactions using Nano-Metal Catalyst
ed. V. Polshettiwar and T. Asefa, Wiley-VCH, 2013.
8 R. S. Varma, Sustainable Chem. Processes, 2014, 2, 11.
58, 62–69.
37 L. Liu, H. Liang, H. Yang, J. Wei and Y. Yanzhao,
Nanotechnology, 2011, 22, 015603–015611.
9 Z. Chen, Z. Jiao, D. Pan, Z. Li, M. Wu, C.-H. Shek, C. M. L. Wu 38 Y. Qiu, G.-L. Xu, K. Yan, H. Sun, J. Xiao, S. Yang, S.-G. Sun,
and K. L. L. Joseph, Chem. Rev., 2012, 112, 3833–3855. L. Jin and H. Deng, J. Mater. Chem., 2011, 21, 6346–6353.
10 W. Weifeng, C. Xinwei, C. Weixing and G. I. Douglas, Chem. 39 J. Cao, Q. Mao and Y. Qian, J. Solid State Chem., 2012, 191,
Soc. Rev., 2011, 40, 1697–1721. 10–14.
11 G. S. Thomas, J. R. Bargar, S. Garrison and M. T. Bradley, Acc. 40 M. Amini, M. M. Najafpour, S. Nayeri, B. Pashaei and
Chem. Res., 2010, 43, 2–9.
M. Bagherzadeh, Dalton Trans., 2012, 41, 11026–11031.
12 V. Polshettiwar, B. Baruwati and R. S. Varma, ACS Nano, 41 T. Mallat and A. Baiker, Chem. Rev., 2004, 104, 3037–3058.
2009, 3, 728–736.
42 C. J. Weiss, P. Das, D. L. Miller, M. L. Helm and A. M. Appel,
13 Z. Hao, C. Gaoping, W. Zhiyong, Y. Yusheng, S. Zujin and
G. Zhennan, Nano Lett., 2008, 8, 2664–2668.
14 Y. Hirao, C. Yokoyama and M. Makoto, Chem. Commun.,
1996, 597–598.
15 E. A. Kotomin, Y. A. Mastrikov, E. Heifets and J. Maier, Phys.
Chem. Chem. Phys., 2008, 10, 4644–4649.
16 Z. W. Chen, S. Y. Zhang, S. Tan, J. Wang and S. Z. Jin, Appl.
Phys. A, 2004, 78, 581–584.
ACS Catal., 2014, 4, 2951–2958.
¨
43 D. Konning, T. Olbrisch, F. D. Sypaseuth, C. C. Tzschucke
and M. Christmann, Chem. Commun., 2014, 50, 5014–5016.
44 Y. Hong, X. Yan, X. Liao, R. Li, S. Xu, L. Xiao and J. Fan,
Chem. Commun., 2014, 50, 9679–9682.
45 Z.-A. Qiao, P. Zhang, S.-H. Chai, M. Chi, G. M. Veith,
N. C. Gallego, M. Kidder and S. Dai, J. Am. Chem. Soc.,
2014, 136, 11260–11263.
17 S. Huang, Y. Ding, Y. Liu, L. Su, R. Filosa Jr and Y. Lei, 46 D. K. Maiti, N. Chatterjee, P. Pandit and S. K. Hota, Chem.
Electroanalysis, 2001, 23, 1912–1920. Commun., 2010, 46, 2022–2024.
18 J.-H. Kim, K. H. Lee, L. J. Overzet and G. S. Lee, Nano Lett., 47 S. Khamarui, R. Maiti and D. K. Maiti, Chem. Commun., 2015,
2011, 11, 2611–2617.
51, 384–387.
33928 | RSC Adv., 2015, 5, 33923–33929
This journal is © The Royal Society of Chemistry 2015