RESEARCH FRONT
Cationic Iridium Dendrimers
1219
Complex C2
second step dH 8.68–8.68 (1H, m, Ir-H), 8.61–8.58 (6H, m, Cz-
H), 8.50–8.39 (19H, m, Tr-H and Ir-H), 8.18–8.16 (1H, d, J 5.1,
Ir-H), 7.95–7.83 (18H, m, Cz-H and Tr-H), 7.77–7.75 (1H, d,
J 8.3, Ir-H), 7.70–7.68 (1H, d, J 7.7, Ir-H), 7.57–7.29 (39H, m,
Tr-H and Ir-H), 7.19–7.14 (4H, m, Ir-H), 7.09–7.07 (2H, m,
Ir-H), 6.97–6.95 (2H, m, Ir-H), 6.82–6.75 (3H, m, Ir-H), 6.51–
6.50 (1H, d, J 7.6, Ir-H), 6.41–6.39 (1H, d, J 7.5, Ir-H), 6.34–6.32
(1H, d, J 8.4, Ir-H), 5.90–5.87 (1H, d, J 8.2, Ir-H), 5.70–5.67
(1H, d, J 8.3, Ir-H), 4.86–4.32 (12H, m, N-CH2), 3.04–3.02
(36H, m, CH2), 2.22–2.20 (36H, m, CH2), 2.07–0.57 (420H, m,
CH2 and CH3). dC 162.5, 160.0, 155.7, 154.5, 153.7, 153.6,
152.2, 151.9, 149.3, 145.3, 145.1, 145.0, 144.8, 144.7, 140.5,
140.4, 140.0, 139.8, 139.2, 139.1, 138.8, 138.4, 138.2, 138.1,
135.1, 134.9, 134.1, 133.8, 133.4, 133.0, 132.6, 130.7, 130.1,
128.2, 126.4, 126.0, 125.5, 125.2, 124.9, 124.6, 123.7, 123.6,
122.6, 122.2, 120.7, 119.0, 118.8, 113.9, 113.8, 110.7, 110.5,
109. 3, 109.0, 55.8, 55.6, 52.2, 44.8, 43.2, 37.1, 31.9, 31.6, 31.5,
29.7, 29.6, 29.5, 29.2, 28.9, 27.2, 26.8, 25.9, 25.5, 23.9, 23.8,
22.7, 22.3, 22.1, 14.1, 13.9, 13.8, 13.8, 13.7, 12.6. m/z (MALDI-
TOF) Calc. for C470H612IrN10: [M – PFꢀ6 ]þ: 6589.7. Found
[M – PFꢀ6 ]þ:6589.6. Anal. Calc. for C470H612F6IrN10P ꢂ 2H2O:
C 83.32, H 9.16, N 2.07. Found: C 83.49, H 9.51, N 2.32 %.
The procedure followed was the same as for the synthesis of
C1 albeit using compound 12 in place of 9 (yield: 63 %). dH
8.54–8.51 (d, 1H, J 8.4 ), 8.38–8.33 (m, 1H), 8.17–8.15 (d, 1H,
J 5.4 ), 7.80–7.55 (m, 2H), 7.51–7.43 (m, 5H), 7.26–6.95
(m, 6H), 6.90–6.72 (m, 2H), 6.48–6.28 (m, 3H), 5.91–5.88
(d, 1H, J 8.1), 5.68–5.65 (d, 1H, J 8.4), 4.82–4.57 (m, 6H),
2.07–1.86 (m, 6H), 1.49–0.72 (m, 27H); dC 162.6, 162.5, 153.4,
152.4, 151.9, 149.5, 148.1, 140.1, 139.9, 139.0, 138.7, 136.1,
135.1, 135.0, 134.5, 134.3, 133.9, 133.6, 130.4, 129.7, 127.5,
125.9, 125.1, 124.9, 124.6, 124.6, 124.1, 123.9, 123.4, 123.2,
122.3, 122.1, 118.5, 114.3, 113.6, 111.4, 110.6, 45.8, 44.9, 44.7,
31.3, 31.2, 31.2, 29.8, 29.5, 29.4, 26.3, 26.2, 26.0, 22.4, 22.3,
22.2, 13.9, 13.8, 13.8. m/z (ESI) Calc. for [M – PFꢀ6 ]þ: 1026.5.
Found: 1026.5.
Dendrimer D1
A mixture of 6 (5.7 g, 2.47 mmol), iridium chloride trihydrate
(174 mg, 0.50 mmol), and DMF (13 mL) was heated (bath
temperature: 1308C) under argon for 48 h. After the reaction
was cooled to room temperature, the mixture was extracted with
dichloromethane and washed with water and brine. The organic
layer was dried over MgSO4. After removal of the solvents
under reduced pressure, the residue was filtered through a short
silica column using pentane as eluent to give C^N2Ir
(m-Cl)2IrC^N2 as a yellow solid powder . The chloro-bridged
iridium dimer C^N2Ir(m-Cl)2IrC^N2 was used for the next step
without further purification. A mixture of C^N2Ir(m-Cl)2IrC^N2
(1.3 g, 0.15 mmol) and compound 7 (1.0 g, 0.47 mmol) was
heated in THF at 758C under an argon atmosphere for 3 days.
After cooling to room temperature, excess NaPF6 in methanol
was added dropwise and the mixture was stirred for an additional
4 h. After the counterion exchange from Clꢀ to PF6ꢀ was
accomplished, the solvent was removed under reduced pressure
and the mixture was extracted with chloroform. The organic
layer was washed with brine and dried over anhydrous MgSO4.
The product was purified by silica gel column chromatography
using petroleum ether and ethyl acetate (20:1) as eluents (yield:
10 %) in two steps.
dH 8.60–8.58 (6H, m, Cz-H), 8.63–8.43 (20H, m, Ir-H and
Tr-H), 8.10–8.07 (1H, m, Ir-H), 7.95–7.72 (24H, m, Cz-H
and Tr-H), 7.72–7.70 (2H, m, Ir-H) 7.50–7.26 (41H, m, Tr-H
and Ir-H), 7.07–7.02 (4H, m, Ir-H), 6.81–6.75 (2H, m, Ir-H),
6.38–6.32 (2H, m, Ir-H), 6.13–6.11 (1H, d, J 8.0 , Ir-H), 5.64–
5.62 (1H, d, J 8.1, Ir-H), 4.77–4.38 (12H, m, N-CH2), 3.01–2.99
(36H, m, CH2), 2.22–2.04 (36H, m, CH2), 1.70 (3H, s, CH3),
1.56–0.53 (420H, m, CH2 and CH3). dC 162.7, 162.5, 154.4,
153.8, 153.7, 153.6, 152.3, 149.7, 148.1, 145.0, 144.9, 144.8,
144.7, 144.6, 140.5, 140.4, 140.3, 139.9, 139.8, 139.7, 139.1,
139.0, 138.9, 138.8, 138.4, 138.3, 138.2, 138.1, 138.0, 136.0,
134.9, 134.8, 134.5, 133.9, 133.7, 132.6, 130.9, 130.6, 129.8,
128.8, 127.5, 126.3, 125.9, 125.5, 125.2, 124.9, 124.6, 123.7,
123.6, 122.2, 120.6, 119.0, 118.8, 114.5, 113.9, 111.5, 110.4,
109.3, 109.0, 55.8, 55.6, 37.1, 37.0, 36.9, 31.6, 31.5, 29.7, 29.6,
29.5, 24.0, 23.9, 22.3, 14.0, 13.9, 13.8. m/z (MALDI-TOF) Calc.
for C466H611IrN11 [M – PFꢀ6 ]þ: 6554.7. Found [M – PF6ꢀ]þ:
6554.6. Anal. Calc. for C466H611F6IrN11P: C 83.49, H 9.19, N
2.30. Found: C 83.72, H 9.53, N 2.48 %.
Acknowledgement
This work was supported by the Major State Basic Research Development
Program (No. 2009CB623601) from the Ministry of Science and Technol-
ogy, China, and National Natural Science Foundation of China.
References
[1] S. C. Lo, N. A. H. Male, J. P. J. Markham, S. W. Magennis, P. L. Burn,
O. V. Salata, I. D. W. Samuel, Adv. Mater. 2002, 14, 975.
[2] N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Campagna,
B. Verheyde, A. Hameurlaine, W. Dehaen, J. Am. Chem. Soc. 2003,
125, 5356. doi:10.1021/JA021373Y
[3] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E.
Thompson, S. R. Forrest, Nature 1998, 395, 151. doi:10.1038/25954
[4] X. Gong, M. R. Robinson, J. C. Ostrowki, D. Moses, G. C. Bazan, A. J.
Heeger, Adv. Mater. 2002, 14, 581. doi:10.1002/1521-4095(20020418)
14:8,581::AID-ADMA581.3.0.CO;2-B
[5] A. Ko¨hler, J. Wilson, R. Friend, Adv. Mater. 2002, 14, 701. doi:10.1002/
1521-4095(20020517)14:10,701::AID-ADMA701.3.0.CO;2-4
[6] E. Holder, B. M. W. Langeveld, U. S. Schubert, Adv. Mater. 2005, 17,
1109. doi:10.1002/ADMA.200400284
[7] S. Welter, K. Brunner, J. W. Hofstraat, L. De Cola, Nature 2003, 421,
54. doi:10.1038/NATURE01309
[8] J. Slinker, D. Bernards, P. L. Houston, H. D. Abruna, S. Bernhard,
G. G. Malliaras, Chem. Commun. 2003, 2392. doi:10.1039/B304265K
[9] M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, M. E. Thompson,
J. Am. Chem. Soc. 2003, 125, 7796. doi:10.1021/JA0343297
[10] H. Rudmann, S. Shimada, M. F. Rubner, J. Am. Chem. Soc. 2002, 124,
4918. doi:10.1021/JA012721J
[11] M. Buda, G. Kalyuzhny, A. J. Bard, J. Am. Chem. Soc. 2002, 124,
6090. doi:10.1021/JA017834H
[12] F. G. Gao, A. J. Bard, J. Am. Chem. Soc. 2000, 122, 7426. doi:10.1021/
JA000666T
[13] M. K. Nazeeruddin, R. T. Wegh, Z. Zhou, C. Klein, Q. Wang,
F. Angelis, M. Gra1tzel, Inorg. Chem. 2006, 45, 9245. doi:10.1021/
IC060495E
[14] M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G.
Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712. doi:10.1021/
CM051312þ
[15] H. J. Bolink, L. Cappelli, E. Coronado, M. Gra¨tzel, E. Orti, R. D. Costa,
P. M. Viruela, M. K. Nazeeruddin, J. Am. Chem. Soc. 2006, 128,
14786. doi:10.1021/JA066416F
Dendrimer D2
[16] J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. J. Wang, S. Parker,
R. Rohl, S. Bernhard, G. G. Malliaras, J. Am. Chem. Soc. 2004, 126,
2763. doi:10.1021/JA0345221
This dendirmer was prepared by the same procedure as used
to produce D1 albeit using compound 8 in place of 7 in the