◦
(E)-2-Azidonon-3-enyl 2-tosylacetate (11a) and
(E)-4-azidonon-2-enyl 2-tosylacetate (12a)
Data for syn-14a: m.p 72–74 C; nmax (film) 2902, 2100, 1456,
1142, 880, 771, 706, 670 cm-1; dH (400 MHz, CDCl3) 7.81 (2H, d,
J 8.5, o-Ts), 7.39 (2H, d, J 8.5, m-Ts), 5.60 (1H, ddd, J 17.0,
10.0, 8.5, CHCH2), 5.17 (1H, d, J 10.0, trans-CHCH2), 5.12
(1H, d, J 17.0, cis-CHCH2), 3.70 (1H, ddd, J 8.5, 5.5, 3.0, H-
3), [3.40 (1H, dd, J 14.0, 7.0) and 3.15 (1H, dd, J 14.0, 6.0),
H-1], 2.90 (1H, dddd, J 12.5, 9.5, 6.0, 3.0, H-2), 2.48 (3H, s,
TsMe), 1.62–1.31 (8H, m, H-4,5,6,7), 0.92 (3H, t, J 6.0, H-8);
dC (101 MHz, CDCl3) 144.9 (Ts), 136.9 (Ts), 133.7 (CHCH2),
130.0 (m-Ts), 128.0 (o-Ts), 119.5 (CHCH2), 64.3 (C-3), 58.1 (C-
1), 42.5 (C-2), 32.2 (C-4), 31.5 (C-5), 25.8 (C-6), 22.5 (C-7), 21.7
(TsMe), 14.0 (C-8); m/z (CI) 353 [MNH4]+, 310, 226, 174, 152;
m/z (CI) 353 [MNH4]+, 310, 226, 152 (Found: [MNH4]+, 353.2020.
C17H25N3O2S requires [MNH4]+, 353.2011) (Found: C, 60.95; H,
7.47; N, 12.48. C17H25N3O2S requires C, 60.87; H, 7.51; N, 12.53).
NMR data for anti-14a: dH (400 MHz, CDCl3) 7.79 (2H, d, J
8.0, o-Ts), 7.38 (2H, d, J 8.0, m-Ts), 5.68 (1H, ddd, J 17.5, 10.0,
8.5, CHCH2), 5.17 (1H, d, J 10.0, trans-CHCH2), 5.16 (1H, d, J
17.5, cis-CHCH2), 3.41–3.36 (1H, m, H-3), [3.31 (1H, dd, J 14.5,
3.5) and 3.20 (1H, dd, J 14.5, 9.0), H-1], 2.80–2.74 (1H, m, H-
2), 2.48 (3H, s, TsMe), 1.63–1.28 (8H, m, H-4,5,6,7), 0.91 (3H, t,
J 7.0, H-8); dC (101 MHz, CDCl3) 144.4 (Ts), 135.9 (Ts), 135.5
(CHCH2), 129.9 (m-Ts), 128.1 (o-Ts), 118.9 (CHCH2), 65.8 (C-3),
56.9 (C-1), 43.0 (C-2), 31.6 (C-4), 31.4 (C-5), 25.3 (C-6), 22.4 (C-7),
21.7 (TsMe), 13.6 (C-8).
To a solution of a 73 : 27 mixture of allylic azides 5a and 6a
respectively (1.00 g, 5.46 mmol, 1.0 equiv) in dichloromethane
(10 mL) was added DMAP (0.546 mmol, 0.1 equiv), followed by
a solution of DCC (6.01 mmol, 1.1 equiv) in dichloromethane
(10 mL) at rt. The mixture was stirred for 5 min before addition of
2-p-toluenesulfonylacetic acid (1.29 g, 6.01 mmol, 1.1 equiv). After
stirring the colourless suspension for 16 h, the reaction mixture
was filtered through Celite and the filtrate was concentrated under
reduced pressure to afford a 58 : 42 mixture of the esters (E)-2-
azidonon-3-enyl 2-tosylacetate 11a and (E)-4-azidonon-2-enyl 2-
tosylacetate 12a (2.05 g, 99%) respectively as a colourless oil after
purification over silica gel (25% ether/petrol).
Data for the mixture: nmax (film) 2932, 2099, 1747, 1598, 1455,
1330, 1152, 1085, 975, 814, 728, 646, cm-1; dC (126 MHz, CDCl3)
162.2, 162.1, 138.7, 133.2, 129.9, 128.5, 125.9, 128.5, 125.9, 122.3,
67.1, 65.5, 63.5, 62.0, 60.8, 34.2, 32.2, 31.4, 31.2, 28.5, 25.4,
22.5, 22.4, 21.7, 14.0; m/z (CI) 397 [MNH4]+, 352, 243 (Found:
[MNH4]+, 397.1926. C18H25N3O4S requires [MNH4]+, 397.1910).
1H-NMR data for 11a: dH (500 MHz, CDCl3) 7.85–7.81 (2H,
m, o-Ts), 7.39–7.37 (2H, m, m-Ts), 5.82 (1H, dt, J 15.0, 7.0, H-4),
5.31 (1H, ddt, J 15.0, 7.0, 1.5, H-3), 4.62 (2H, d, J 5.0, H-1), 4.13
(2H, d, J 5.0, CH2Ts), 4.10–3.90 (1H, m, H-2), 2.47 (3H, s, TsMe),
2.10–2.15 (2H, m, H-5), 1.57–1.28 (6H, m, H-6,7,8), 0.89 (3H, t, J
7.5, H-9).
1H-NMR data for 12b: dH (500 MHz, CDCl3) 7.85–7.81 (2H,
m, o-Ts), 7.39–7.37 (2H, m, m-Ts), 5.74–5.65 (2H, m, H-2,3), 4.62
(2H, d, J 5.0, H-1), 4.13 (2H, d, J 5.0, CH2Ts), 3.82 (1H, dt, J
14.0, 7.0, H-4), 2.47 (3H, s, TsMe), 1.57–1.28 (8H, m, H-5,6,7,8),
0.89 (3H, t, J 7.5, H-9).
Acknowledgements
We thank EPSRC and Pfizer for support (supported DTA
studentship to A.G.O.).
Notes and references
1-[(3-Azido-2-ethenyloctane)sulfonyl]-4-methylbenzene (14a)
1 D. Askin, C. Angst and S. Danishefsky, J. Org. Chem., 1985, 50, 5005.
2 A. K. Feldman, B. Colasson, K. B. Sharpless and V. V. Fokin, J. Am.
Chem. Soc., 2005, 127, 13444.
3 (a) A. Gagneux, S. Winstein and W. G. Young, J. Am. Chem. Soc., 1960,
82, 5956; (b) C. A. VanderWerf and V. L. Heasley, J. Org. Chem., 1966,
31, 3534.
To a solution of a 58 : 42 mixture of allylic azides 11a and
12a respectively (50 mg, 0.132 mmol, 1.0 equiv) in acetonitrile
(1.0 M) was added N,O-bistrimethylsilylacetamide (0.396 mmol,
3.0 equiv) and TEA (0.158 mmol, 1.2 equiv) in a capped microwave
vial. The mixture was heated by microwave at 160 ◦C until
TLC showed consumption of the starting material. The reaction
mixture was cooled to rt, quenched with aqueous HCl (2 M,
10 mL) and extracted with dichloromethane (3 ¥ 10 mL). The com-
bined organic extracts were passed though an SCX ion-exchange
column (conditioned with 10% MeOH/dichloromethane) and
concentrated under reduced pressure to afford the acid inter-
mediate 13a without further purification. To solution of the
crude acid (1.0 equiv) in DMF (1.0 M) was added sodium
hydrogencarbonate (1.2 equiv) in a microwave vial. The mixture
4 A. Padwa and M. M. Sa´, Tetrahedron Lett., 1997, 38, 5087.
5 For an example of rearrangement via an ionic transition state see: G.
L. Closs and A. M. Harrison, J. Org. Chem., 1972, 37, 1051.
6 (a) B. M. Trost and S. R. Pulley, Tetrahedron Lett., 1995, 36, 8737;
(b) F. Klepper, E.-M. Jahn, V. Hickmann and T. Carell, Angew. Chem.,
Int. Ed., 2007, 46, 2325; (c) H. Guo and G. A. O’Doherty, Org. Lett.,
2006, 8, 1609; (d) S. Lauzon, F. Tremblay, D. Gagnon, C. Godbout, C.
Chabot, C. Mercier-Shanks, S. Perreault, H. DeSe`ve and C. Spino, J.
Org. Chem., 2008, 73, 6239.
7 In conceptually related processes the vinylic, rather than allylic portion
of the ketene acetal is established by isomerisation: (a) K. Wang, C. J.
Bungard and S. G. Nelson, Org. Lett., 2007, 9, 2325; (b) B. D. Stevens
and S. G. Nelson, J. Org. Chem., 2005, 70, 4375; (c) B. D. Stevens, C. J.
Bungard and S. G. Nelson, J. Org. Chem., 2006, 71, 6397; (d) K. Wang
and S. G. Nelson, J. Am. Chem. Soc., 2006, 128, 4232; (e) H. B. Ammar,
J. Le Noˆtre, M. Salem, M. T. Kaddachi, L. Toupet, J.-L. Renaud, C.
Bruneau and P. H. Dixneuf, Eur. J. Inorg. Chem., 2003, 4055; (f) C.
C. Bausch and J. S. Johnson, J. Org. Chem., 2008, 73, 1575; (g) U.
Kazmaier, Tetrahedron Lett., 1996, 37, 5351; (h) B. Schmidt, Synlett,
2004, 1541.
◦
was heated by microwave at 160 C for 35 min and cooled to rt.
Water (10 mL) was added and the mixture was extracted with
dichloromethane (3 ¥ 10 mL). The combined organic extracts
were dried (MgSO4) and concentrated under reduced pressure to
afford 1-[(3-azido-2-ethenyloctane)sulfonyl]-4-methylbenzene 14a
(38 mg, 86%, 84 : 16 syn:anti mixture of diastereomers) as a
white solid after purification over silica gel (2–10% ether/petrol).
Repeated purification over silica gel (2–10% ether/petrol) followed
by recrystallisation (EtOAc/petrol) afforded an analytical sample
of syn-14a for crystallography studies and an analytical sample
enriched in anti-14a.
8 The syn product is typically formed when the ketene acetal bears a
heteroatom-containing stereocentre at the 6¢ position: (a) J. K. Cha
and S. C. Lewis, Tetrahedron Lett., 1984, 25, 5263; (b) T. Suzuki, E.
Sato, S. Kamada, H. Tada, K. Unno and T. Kametani, J. Chem. Soc.,
Perkin Trans. 1, 1986, 387; (c) S. Takano, K. Seijo and S. Hatakeyama,
Tetrahedron Lett., 1985, 26, 865; (d) J. Mulzer and M. Shanyoor,
Tetrahedron Lett., 1993, 34, 6545; (e) J. R. Hauske and S. M. Julin,
7060 | Org. Biomol. Chem., 2011, 9, 7057–7061
This journal is
The Royal Society of Chemistry 2011
©