S. Specklin et al. / Tetrahedron Letters 52 (2011) 5820–5823
5823
reaction mixtures, in which the expected transprotected product
References and notes
can hardly be detected (entry 10).
1. Greene, T. W.; Wuts, P. G. M. Protective groups in Organic Synthesis, 3rd ed.; J.
Wiley & Sons: New York, 1999.
Having surveyed the scope of this transprotection with various
alcohols, we then briefly investigated the orthogonality of this
method with other protecting groups. Benzyl, ester, acetal, and car-
bobenzyloxy (CBz) groups proved compatible with this transpro-
tection procedure (entries 11–15). However, Boc-protecting
groups gave less satisfactory results, surprisingly inducing a very
slow reaction but without BOC deprotection14 (entries 16 and 17).
In summary, we have further expanded the scope of synthetic
applications of copper salts in organic chemistry, demonstrating
that transprotection from silyl to diarylmethyl ethers can be
achieved in good to high yields with CuBr2 as catalyst at room tem-
perature. With very mild conditions, with a wide tolerance to other
protecting groups, this new interconversion of silyl to diarylmethyl
protecting groups will find applications in organic synthesis, espe-
cially in the total synthesis of natural products.
2. Kocienski, P. J. Protecting groups, 3rd ed.; G. Thieme: Stuttgart: New York, 2004.
3. (a) Nicolaou, K. C.; Sorensen, E. Classics in Total Synthesis; Wiley-VCH:
Weinheim, 1996; (b) Nicolaou, K. C.; Snyder, S. A. Classics in Total Synthesis II;
Wiley-VCH: Weinheim, 2003; (c) Nicolaou, K. C.; Chen, J. S. Classics in Total
Synthesis III; Wiley-VCH: Weinheim, 2011.
4. For selected exemples of transprotection: (a) Rawal, V. H.; Michoud, C.;
Monestel, R. F. J. Am. Chem. Soc. 1993, 115, 3030–3031; (b) Roos, E. C.; Bernabé,
P.; Hiemstra, H.; Speckamp, W. N.; Kaptein, B.; Boesten, W. H. J. J. Org. Chem.
1995, 60, 1733–1740; (c) Furlán, R. L. E.; Mata, E. G. ARKIVOC 2003, x, 32–40;
through organocatalysis, see: (d) Poisson, T.; Dalla, V.; Papamicael, C.; Dupas,
G.; Marsais, F.; Levacher, V. Synlett 2007, 381–386; through Cu-catalysis,see:
(e) Chandra, K. L.; Saranavan, P.; Singh, V. K. Tetrahedron Lett. 2001, 42, 5309–
5311; through Fe-catalysis, see: (f) Asadolah, K.; Heravi, M. M. Monatsh. Chem.
2007, 138, 867–869; (g) Ganem, B.; Small, V. R. J. Org. Chem. 1974, 39, 3728–
3730; (h) Harjani, J. R.; Nara, S. J.; Salunkhe, M. M. Nucleosides, Nucleotides &
Nucleic Acids 2005, 24, 819–822; (i) Bourdreux, Y.; Lemétais, A.; Urban, D.;
Beau, J.-M. Chem. Commun. 2011, 47, 2146–2148; through other catalysis, see:
(j) Oriyama, T.; Oda, M.; Gono, J.; Koga, G. Tetrahedron Lett. 1994, 35, 2027–
2030; (k) Norsikian, S.; Holmes, I.; Lagasse, F.; Kagan, H. Tetrahedron Lett. 2002,
43, 5715–5717.
Further works are now in progress to further explore the scope
of this reaction and to apply them in total synthesis.
5. (a) Bikard, Y.; Weibel, J.-M.; Sirlin, C.; Dupuis, L.; Loeffler, J.-P.;Pale, P. Tetrahedron
Lett. 2007, 48, 8895–8899;(b)Bikard, Y.;Mezaache, R.; Weibel, J.-M.;Benkouider,
A.; Sirlin, C.; Pale, P. Tetrahedron 2008, 64, 10224–10232.
6. Mezaache, R.; Dembélé, Y. A.; Bikard, Y.; Weibel, J.-M.; Blanc, A.; Pale, P.
Tetrahedron Lett. 2009, 50, 7322–7326.
Typical procedure for the transprotection of silyl alcohols with
BMPM-OH
7. Modern Organocopper Chemistry; Krause, N., Ed.; Wiley: New-York, 2002.
8. Pathak, A. K.; Pathak, V.; Seitz, L. E.; Tiwari, K. N.; Akhtar, M. S.; Reynolds, R. C.
Tetrahedron Lett. 2001, 42, 7755–7757.
9. (a) Tan, Z. P.; Wang, L.; Wang, J. B. Chin. Chem. Lett. 2000, 11, 753–756; (b)
Bhatt, S.; Nayak, S. K. Tetrahedron Lett. 2006, 47, 8395–8399.
10. Wang, J.; Zhang, C.; Qu, Z.; Hou, Y.; Chen, B.; Wu, P. J. Chem. Research (S) 1999,
294–295; (b) Saravanan, P.; Chandrasekhar, M.; Anand, R. V.; Singh, V. K.
Tetrahedron Lett. 1998, 39, 3091–3092.
To a solution of the silylated substrate (0.9 mmol) in dry CH3CN
(1 mL) at room temperature under argon, was added bis(4-
methoxyphenyl)methanol (244 mg, 1 mmol) and copper(II) bro-
mide (22 mg, 0.1 mmol). The reaction was monitored by TLC. After
completion, the reaction mixture was concentrated under vacuum
and then diluted with Et2O (20 mL) and water (20 mL). After parti-
tioning, the aqueous layer was extracted three times with Et2O and
the combined organic layers were dried over Na2SO4. The crude
product was then purified by flash chromatography over silica gel.
11. For Cu-catalyzed transprotection to acetates, see Refs. 4e,f and Bhatt, S.; Nayak,
S. K. Lett. Org. Chem. 2008, 5, 435–443. For
a specific Cu-catalyzed
transprotection and reaction in glycochemistry, see: Français, A.; Urban, D.;
Beau, J.-M. Angew. Chem., Int. Ed. 2007, 46, 8662–8665.
12. Copper sulfate, chloride, acetate and triflate were examined as in Ref. 6.
13. (a) Mukaiyama, T.; Kobayashi, S.; Murakami, M. Chem. Lett. 1984, 1759–1762;
(b) Mukaiyama, T.; Kobayashi, S.; Murakami, M. Chem. Lett. 1985, 447–450; (c)
Kobayashi, S.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1985, 1535–1538; (d)
Ohshima, M.; Murakami, M.; Mukaiyama, T. Chem. Lett. 1985, 1871–1874.
14. N-Boc derivatives are known to undergo deprotection with active silylation
reagent (see Sakaitani, M.; Ohfune, Y. Tetrahedron Lett. 1985, 26, 5543–5546
and J. Org. Chem. 1990, 55, 870–876) and the silyl oxonium intermediate (B in
Scheme 4) could have acted as such.
Acknowledgments
The authors thank the CNRS, the French Ministry of Research for
financial support, the CMEP-Tassili exchange program for support
to RM and HH, and the French embassy in Mali for financial sup-
port to Y.A.D.