Inorganic Chemistry
ARTICLE
[Ce(dmap)4] precursor Ce, 31.8; O, 65.9; C, 2.3 at %. The
compositions of the films were derived from the peak areas of
the Ce(5d(3/2, 5/2)), O(1s), and C(1s) signals after a nominal
ion bombardment to remove adventitious surface contamination.
The measurement of carbon content is complicated by the
presence of an overlapping Ce XPS peak, and results are are to
some extent notional. The XPS data show that the Ce:O ratio is
close to 1:2 for films grown from [Ce(mmp)4] and from
[Ce(dmap)4]. Combined with Raman and XRD data this con-
firms the bulk composition of the films to be CeO2. A detailed
study of materials properties of CeO2 grown by ALD using
[Ce(mmp)4] is published elsewhere.31
(4) Jasinski, P.; Suzuki, T.; Anderson, H. U. Sens. Actuators B-Chem.
2003, 95, 73–77.
(5) Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; McEvoy,
A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Nat. Mater. 2004, 3, 17–27.
(6) Jones, A. C.; Aspinall, H. C.; Chalker, P. R.; Potter, R. J.;
Manning, T. D.; Loo, Y. F.; O’Kane, R.; Gaskell, J. M.; Smith, L. M.
Chem. Vap. Deposition 2006, 12, 83–98.
(7) Leskela, M.; Ritala, M. Angew. Chem., Int. Ed. 2003, 42, 5548–5554.
(8) Suh, S.; Guan, J.; Miinea, L. A.; Lehn, J.-S. M.; Hoffman, D. M.
Chem. Mater. 2004, 16, 1667–1673.
(9) Fleeting, K. A.; O’Brien, P.; Jones, A. C.; Otway, D. J.; Andrew,
A. J. P.; Williams, D. J. J. Chem. Soc.-Dalton Trans. 1999, 2853–2859.
(10) Loo, Y. F.; O’Kane, R.; Jones, A. C.; Aspinall, H. C.; Potter, R. J.;
Chalker, P. R.; Bickley, J. F.; Taylor, S.; Smith, L. M. Chem. Vap.
Deposition 2005, 11, 299–305.
(11) Wrench, J. S.; Black, K.; Aspinall, H. C.; Jones, A. C.; Bacsa, J.;
Chalker, P. R.; King, P. J.; Werner, M.; Davies, H. O.; Heys, P. N. Chem.
Vap. Deposition 2009, 15, 259–261.
(12) Pridgen, L. N.; Miller, G. J. Heterocycl. Chem. 1983, 20, 1223–1230.
(13) Aspinall, H. C.; Beckingham, O.; Farrar, M. D.; Greeves, N.;
Thomas, C. D. Tetrahedron Lett. 2011, 52, 5120–5123.
(14) SAINT V7.68a; BRUKER AXS Inc.: WI, USA, 2009.
(15) Barbour, L. J. J. Supramolec. Chem. 2001, 1, 189–191.
(16) Sheldrake, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr.
2008, 64, 112–122.
(17) Potter, R. J.; Chalker, P. R.; Manning, T. D.; Aspinall, H. C.;
Loo, Y. F.; Jones, A. C.; Smith, L. M.; Critchlow, G. W.; Schumacher, M.
Chem. Vap. Deposition 2005, 11, 159–169.
(18) Belot, J. A.; Wang, A.; McNeely, R. J.; Liable-Sands, L.;
Rheingold, A. L.; Marks, T. J. Chem. Vap. Deposition 1999, 5, 65–69.
(19) Edleman, N. L.; Wang, A.; Belot, J. A.; Metz, A. W.; Babcock,
J. R.; Kawaoka, A. M.; Ni, J.; Metz, M. V.; Flaschenriem, C. J.; Stern,
C. L.; Liable-Sands, L. M.; Rheingold, A. L.; Markworth, P. R.; Chang,
R. P. H.; Chudzik, M. P.; Kannewurf, C. R.; Marks, T. J. Inorg. Chem.
2002, 41, 5005–5023.
(20) Wang, A.; Belot, J. A.; Marks, T. J.; Markworth, P. R.; Chang,
R. P. H.; Chudzik, M. P.; Kannewurf, C. R. Physica C (Amsterdam) 1999,
320, 154–160.
’ CONCLUSIONS
We have prepared a series of homoleptic and heteroleptic
complexes of cerium(IV) with donor-functionalized alkoxide
ligands and investigated their potential as precursors for the
MOCVD and ALD of CeO2. The homoleptic complexes with
mmp, dmap, or dmop ligands show good solution stability with
no tendency to decompose either to oxo-bridged structures or to
Ce(III) species. The heteroleptic complexes have a tendency to
undergo ligand redistribution reactions in solution. The
eight-coordinate homoleptic complexes [Ce(mmp)4] 1 and
[Ce(dmap)4] 3 are both excellent precursors for liquid-
injection MOCVD of CeO2: they exhibit high growth rates
and large growth windows, and the thin films show very low
carbon contamination, particularly those grown from 3. 1 is
also an excellent precursor for liquid-injection ALD of CeO2
using H2O as coreactant, demonstrating a window for self-
limiting growth between 150 and 350 °C. Both of these new
precursors have significant advantages when compared with
the widely used [Ce(thd)4]: higher growth rates in both
MOCVD (approximately double) and ALD (approximately
6 times higher), ability to use H2O instead of ozone as
coreactant in ALD, and much better solubility, eliminating
problems of injector blockages in the reactor.
(21) Evans, W. J.; Deming, T. J.; Olofson, J. M.; Ziller, J. W. Inorg.
Chem. 1989, 28, 4027–4034.
(22) Sirio, C.; HubertPfalzgraf, L. G.; Bois, C. Polyhedron 1997,
16, 1129–1136.
(23) Arnold, P. L.; Casely, I. J.; Zlatogorsky, S.; Wilson, C. Helv.
Chim. Acta 2009, 92, 2291–2303.
(24) Cameron, M. A.; George, S. M. Thin Solid Films 1999, 348, 90–98.
(25) Gradeff, P. S.; Schreiber, F. G.; Mauermann, H. J. Less-Common
Met. 1986, 126, 335–338.
’ ASSOCIATED CONTENT
S
Supporting Information. NMR spectra of complexes
b
and crystallographic data as a CIF file. This material is available
(26) Goel, S. C.; Kramer, K. S.; Chiang, M. Y.; Buhro, W. E.
Polyhedron 1990, 9, 611–613.
’ AUTHOR INFORMATION
(27) Anwander, R.; Munck, F. C.; Priermeier, T.; Scherer, W.;
Runte, O.; Herrmann, W. A. Inorg. Chem. 1997, 36, 3545–3552.
(28) Aspinall, H. C.; Bickley, J. F.; Gaskell, J. M.; Jones, A. C.; Labat,
G.; Chalker, P. R.; Williams, P. A. Inorg. Chem. 2007, 46, 5852–5860.
(29) Boyle, T. J.; Ottley, L. A. M. Chem. Rev. 2008, 108, 1896–1917.
(30) Cotton, F. A.; Marler, D. O.; Schwotzer, W. Inorg. Chim. Acta
1984, 85, L31–L32.
(31) King, P. J.; Werner, M.; Chalker, P. R.; Jones, A. C.; Aspinall,
H. C.; Basca, J.; Wrench, J. S.; Black, K.; Davies, H. O.; Heys, P. N. Thin
Solid Films 2011, 519, 4192–4195.
Corresponding Author
*E-mail: hca@liv.ac.uk.
’ ACKNOWLEDGMENT
We thank EPSRC for studentships to J.S.W. and P.J.K., and the
EPSRC National Mass Spectrometry Service Centre Swansea for
mass spectra.
’ REFERENCES
(1) Sharma, R. K.; Kumar, A.; Anthony, J. M. JOM-J. Minerals Met.
Mater. Soc. 2001, 53, 53–55.
(2) Chalker, P. R.; Werner, M.; Romani, S.; Potter, R. J.; Black, K.;
Aspinall, H. C.; Jones, A. C.; Zhao, C. Z.; Taylor, S.; Heys, P. N. Appl.
Phys. Lett. 2008, 93, 182911.
(3) Bi, L.; Kim, H. S.; Dionne, G. F.; Speakman, S. A.; Bono, D.;
Ross, C. A. J. Appl. Phys. 2008, 103, 07D138.
11652
dx.doi.org/10.1021/ic201593s |Inorg. Chem. 2011, 50, 11644–11652