Choi et al.
Synthesis and Properties of a Solution-Processable Truxene Derivative for OLED Devices
devices. The neat TR1 device had a lower turn-on voltage
for light emission, which is consistent with the current
density characteristics. However, maximum efficiency of
the TR1 device showed 2.65 cd/A of the lower value
than that of the 1% and 3% doped DPAVBi in the
TR1 host. Table II summarizes the I–V –L characteris-
tics of the devices. The luminous efficiency of the devices
varies depending on the doping concentration. The CIE
coordinates of (0.163, 0.260) reveals that TR1:DPAVBi
blending system can be used as blue emitting materials.
References and Notes
1. C. W. Tang, S. A. Van Slyke, and C. H. Chen, J. Appl. Phys. 65, 3610
(1989).
2. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature
347, 539 (1990).
3. Y. Yang and A. J. Heeger, Appl. Phys. Lett. 64, 1245 (1994).
4. X.-Y. Cao, X.-H. Zhou, H. Zi, and J. Pei, Macromolecules 37, 8874
(2004).
5. W.-B. Zheng, W.-H. Jin, X.-H. Zhou, and J. Pei, Tetrahedron
63, 2907 (2007).
6. A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D.
C. Bradley, and M. Koeberg, J. Am. Chem. Soc. 126, 13695 (2004).
7. Z. Yang, B. Xu, J. He, L. Xue, Q. Guo, H. Xia, and W. Tian, Org.
Electron. 10, 954 (2009).
4. CONCLUSION
A truxene derivative, TR1, having strong electron donat-
ing group at the periphery of the truxene core was
synthesized as a promising candidate for blue emit-
ting OLED devices. The UV-vis absorption and emis-
sion maxima for TR1 were observed at 358 nm and
415 nm, respectively. It shows good solubility in com-
mon organic solvents, which enable solution casting of the
material on OLED devices. The structure of the device
was constructed with ITO/PEDOT:PSS/TR1:DPAVBi
(50 nm)/BAlq (20 nm)/LiF (1 nm)/Al (200 nm). The EL
band of TR1 was observed at around 482 nm, exhibiting
the blue emitting properties. The best EL efficiency of the
devices obtained by TR1 was found to be 3.65 cd/A. The
8. Y. Geng, S. W. Culligan, A. Trajkovska, J. U. Wallace, and S. H.
Chen, Chem. Mater. 15, 542 (2003).
9. W. Wu, M. Inbasekaran, M. Hudack, D. Welsh, W. Yu, Y. Cheng,
C. Wang, S. Kram, M. Tacey, M. Bernius, R. Fletcher, K. Kiszka,
S. Munger, and J. O’Brien, Microelectronics J. 35, 343 (2004).
10. H. Xia, J. He, B. Xu, S. Wen, Y. Li, and W. Tian, Tetrahedron
64, 5736 (2008).
11. O. Frutos, T. Granier, B. Gomez-Lor, J. Jimenez-Barbero, A. Monge,
E. Gutierrez-Puebla, and A. M. Echavarren, Chem. Eur. J. 8, 2879
(2002).
12. J. Pei, J.-L. Wang, X.-Y. Cao, X.-H. Zhou, and W.-B. Zhang, J. Am.
Chem. Soc. 125, 9944 (2003).
13. X.-Y. Cao, H. Zi, W. Zhang, H. Lu, and J. Pei, J. Org. Chem.
70, 3645 (2005).
14. A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D.
C. Bradley, and M. Koeberg, J. Am. Chem. Soc. 126, 13695 (2004).
15. H. Du, R. A. Fuh, J. Li, A. Corkan, and J. S. Lindsey, Photochem.
& Photobio. 68, 141 (1998).
Delivered by Ingenta to: Nanyang Technological University
CIE coordinates of the corresponding devices were (0.163,
IP: 146.185.205.121 On: Tue, 07 Jun 2016 16:25:21
0.260).
Copyright: American Scientific Publishers
16. K. O. Cheon and J. Shinar, Appl. Phys. Lett. 81, 1738 (2002).
17. C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura,
and T. Kusumoto, Synth. Met. 91, 3 (1997).
18. X.-Y. Jiang, Z.-L. Zhang, X.-Y. Zheng, Y.-Z. Wu, and S.-H. Xu, Thin
Solid Films 401, 251 (2001).
Acknowledgment: This work was mainly supported by
the Samsung Research Grant. One of authors (Kwang-Sup
Lee) gives thanks to the Active Polymer Center for Pat-
tern Integration (NRF ERC 2009-0063224) and the Basic
Science Research Fund of Hannam University.
19. C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl.
Phys. Lett. 67, 3853 (1995).
Received: 31 December 2008. Accepted: 30 September 2009.
J. Nanosci. Nanotechnol. 10, 6916–6919, 2010
6919