G. A. Tomaselli et al.
FULL PAPER
[9] E. Manoury, P. Kalck, M. Urrutigoity, J. Mol. Catal. A 2007,
278, 102–106.
[10] a) Y. Kubo, S. Maeda, S. Tokita, M. Kuba, Nature 1996, 382,
522–524; b) Y. Shoji, K. Tashiro, T. Aida, J. Am. Chem. Soc.
2006, 128, 10690–10691; c) H. Guo, J. Kim, S. Kim, S. Chang,
W. Kim, Langmuir 2009, 25, 648–652.
Uranyl Receptor 3: To a solution of 2 (0.089 mmol) dissolved in
absolute ethanol (10 mL) was added uranyl acetate (0.128 mmol).
The reaction was stirred overnight at room temperature, and the
resulting solid was filtered and dried to yield 3 as a red powder
(90%). 1H NMR (500 MHz, CDCl3): δ = 9.34 (s, 1 H, CH=N),
9.02 (s, 1 H, CH=N), 8.39 (s, 1 H, Ar), 8.00 (d, J = 8.0 Hz, 1 H,
Ar), 7.92 (d, J = 8.0 Hz, 1 H, Ar), 7.82 (d, J = 8.0 Hz, 2 H, Ar),
7.75 (s, 1 H, Ar), 7.72 (s, 1 H, Ar), 7.67 (d, J = 8.0 Hz, 1 H, Ar),
7.51–7.63 (m, 7 H, Ar), 7.48 (s, 1 H, Ar), 7.42 (s, 1 H, Ar), 7.39 (s,
1 H, Ar), 7.33 (s, 1 H, Ar), 7.32 (s, 1 H, Ar), 7.16–7.21 (m, 7 H,
Ar), 7.09 (s, 1 H, Ar), 7.08 (s, 1 H, Ar), 7.04 (m, 3 H, Ar), 6.80 (s,
1 H, OH), 5.79 (d, J = 8.0 Hz, 1 H, CH chiral bridge), 5.65–5.70
[m, 3 H, CH methine and CH2(CH2)3CH3], 5.11 (d, J = 8.0 Hz, 1
H, CH chiral bridge), 4.64 (t, J = 7.5 Hz, 2 H, CH methine), 4.03
(t, J = 7.5 Hz, 1 H, CH methine), 2.23–2.45 [m, 8 H, CH2(CH2)3-
CH3], 1.68 (s, 9 H, CH3 tBu), 1.33–1.63 [m, 24 H, CH2(CH2)3CH3],
1.27 (s, 9 H, CH3 tBu), 0.94 [t, J = 6.5 Hz, 6 H, CH2(CH2)3CH3],
0.79 [t, J = 6.5 Hz, 3 H, CH2(CH2)3CH3], 0.65 [t, J = 6.5 Hz, 3 H,
CH2(CH2)3CH3] ppm. MS (ESI): m/z = 1955.4 [M + H +
[11] M. E. Amato, F. P. Ballistreri, A. Pappalardo, D. Sciotto, G. A.
Tomaselli, R. M. Toscano, Tetrahedron 2007, 63, 9751–9757.
[12] M. E. Amato, F. P. Ballistreri, S. Gentile, A. Pappalardo, G. A.
Tomaselli, R. M. Toscano, J. Org. Chem. 2010, 75, 1437–1443.
[13] F. P. Ballistreri, A. Pappalardo, G. A. Tomaselli, R. M. Tos-
cano, G. Trusso Sfrazzetto, Eur. J. Org. Chem. 2010, 3806–
3810.
[14] a) D. J. Cram, Science 1983, 219, 1177–1183; b) P. P. Castro, G.
Zhao, G. A. Masankay, C. Hernandez, L. M. Gutierrez-Tun-
stad, Org. Lett. 2004, 6, 333–336; c) S. Richeter, J. Rebek Jr.,
J. Am. Chem. Soc. 2004, 126, 16280–16281; d) P. Byron, J. Re-
bek Jr., Chem. Commun. 2005, 722–724; e) T. Iwasawa, E.
Mann, J. Rebek Jr., J. Am. Chem. Soc. 2006, 128, 9308–9309;
f) D. Ajami, J. Rebek Jr., Angew. Chem. 2008, 120, 6148; An-
gew. Chem. Int. Ed. 2008, 47, 6059–6061; g) J. Hou, D. Ajanni,
J. Rebek Jr., J. Am. Chem. Soc. 2008, 130, 7810–7811.
[15] F. P. Ballistreri, A. Pappalardo, G. A. Tomaselli, E. Vittorino,
S. Sortino, G. Trusso Sfrazzetto, New J. Chem. 2010, 34, 2828–
2834.
2H5OH]+, 1978.8 [M
+ Na +
C2H5OH]+. C106H110N8O11U
(1910.11): calcd. C 66.65, H 5.80, N 5.87; found C 66.61, H 5.77,
N 5.81.
Supporting Information (see footnote on the first page of this arti-
cle): 1H, 13C, g-COSY, T-ROESY, and 2D-DOSY NMR spectra,
MS (ESI), UV/Vis titration curves, and Job Plots.
[16] M. E. Amato, F. P. Ballistreri, A. Pappalardo, G. A. Tomaselli,
R. M. Toscano, J. D. Williams, Eur. J. Org. Chem. 2005, 3562–
3570.
[17] P. Skinner, F. Diederich, Helv. Chim. Acta 2001, 84, 2146–2153.
[18] Y. Yamakoshi, R. Schlittler, F. Diederich, J. Mater. Chem.
2001, 11, 2895–2897.
Acknowledgments
[19]
F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M.
Lipton, C. Caufield, G. Chang, T. Hendrickson, W. C. Still, J.
Comput. Chem. 1990, 11, 440–467.
We thank the University of Catania for financial support
[20]
Rebek reported that four-wall cavitands are not suitable recep-
tors for ammonium cations bearing bulky aliphatic groups but
that an open side is an essential requisite so that they can work
(three wall receptors) (A. Lledò, R. J. Hooley, J. Rebek Jr., Org.
Lett. 2008, 10, 3669–3671). In our receptor, the open side is
the salen wall, and therefore, cations must cross it to go inside
the cavity; this determines the interactions governed by the
host–guest stereocenters, which contribute to chiral discrimi-
nation
The optimized structure for complex 2 ʚ d-Phe-TBA (see Sup-
porting Information) appears to be consistent with the NMR
spectroscopic data and seems to support these observations.
A pentagonal bipyramidal coordination geometry for the uran-
yl(VI) ion with two axial oxido groups and with the fifth equa-
torial site available for complexation with anionic monodentate
ligands X– has been previously indicated in these uranyl chiral
macrocyclic complexes.[11–13]
[1] a) J. M. Hopkin, Science 1997, 276, 18–19; b) R. Williams, L.
Chang, A. W. Mudge, A. J. Harwood, Nature 2002, 417, 292–
295; c) T. Hermann, D. J. Patel, Science 2000, 287, 820–825.
[2] a) S. H. Choi, K. M. Huh, T. Ooaya, N. Yui, J. Am. Chem.
Soc. 2003, 125, 6350–6531; b) A. Guerrero-Martinez, T. Mon-
toro, M. H. Vinas, G. Tardajos, J. Pharm. Sci. 2008, 97, 1484–
1498; c) B. He, Y. Shi, Am. Pharm. Rev. 2008, 11, 47–52.
[3] Y. Bae, S. Fukushima, A. Harada, K. Kataoka, Angew. Chem.
2003, 115, 4788; Angew. Chem. Int. Ed. 2003, 42, 4640–4643.
[4] a) W. H. Pirkle, T. C. Pochapsky, Chem. Rev. 1989, 89, 347–
362; b) W. Tang, S. Ng, Nat. Protoc. 2008, 3, 691–697.
[5] P. Mikus, K. Marakova, J. Marak, D. Kaniansky, I. Valaskova,
E. Havranek, J. Chromatogr. A 2008, 1179, 9–16.
[6] a) D. N. Reinhoudt (Ed.), Comprehensive Supramolecular
Chemistry, Pergamon, New York, 1996, vol. 10; b) M. Sper-
anza, F. Rondino, M. Satta, A. Paladini, A. Giardini, D. Ca-
tone, S. Piccirillo, Chirality 2009, 21, 119–144.
[7] A. Vargas, G. Santarossa, M. Iannuzzi, A. Baiker, J. Phys.
Chem. C 2008, 112, 10200–10208.
[21]
[22]
[23]
M. Cametti, M. Nissinen, A. Dalla Cort, L. Mandolini, K.
Rissanen, J. Am. Chem. Soc. 2007, 129, 3641–3648.
Received: June 30, 2011
[8] H. Tsukube, S. Shinoda, H. Tamiaki, Coord. Chem. Rev. 2002,
226, 227–234.
Published Online: August 31, 2011
5680
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 5674–5680