Organic Letters
Letter
K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem., Int. Ed.
2016, 55, 264. (c) Pattillo, C. C.; Strambeanu, I. I.; Calleja, P.;
Vermeulen, N. A.; Mizuno, T.; White, M. C. J. Am. Chem. Soc. 2016, 138,
additional (PhSe)2. As a matter of fact, under these conditions
(PhSe)2 is regenerated from compound 7. From these
preliminary results, we formulate the mechanistic hypothesis
depicted in Scheme 2. In this scenario, excited photocatalyst 4*
may initially activate (PhSe)2 via single-electron transfer (SET)
followed by fragmentation of the resulting radical cation to give
ArSe+ species 5.7,15 The reduced sensitizer 9, in turn, may
undergo oxidation by molecular oxygen. Subsequent excitation
of photocatalyst 4 would eventually complete the photoredox
catalytic cycle. The transiently generated selenenium cation 5
presumably reacts with the olefin moiety to give seleniranium
intermediate 6,16 which on its part is directly attacked by a
nucleophile, leading to 1,2-selenofunctionalized species 7.
Intermediate 7 is most likely also oxidized by excited photo-
catalyst 4*,17 which subsequently leads to the elimination of the
PhSe group and restoration of the carbon−carbon double bond.
In summary, we have disclosed an unprecedented and very
efficient selenium-catalyzed oxidase protocol exemplified in the
oxidative allylic esterification of carboxylic acids with non-
activated alkenes. The title method is characterized by a good
functional group tolerance and allows for the use of a wide range
of different carboxylic acids including amino acids. The suitability
of amino acid derivatives in this protocol is noteworthy as this
feature may allow for the design of a novel oxidative ligation
strategy in the context of depsipeptide syntheses. Consequently,
this procedure opens a new avenue toward the economic and
sustainable incorporation of oxygen functionalities into unsatu-
rated hydrocarbon architectures. We believe that this cooperative
selenocatalytic concept of artificial, light-dependent oxidase
reactivity will expediently complement current methodology in
the realm of oxidation chemistry. Efforts toward the development
of an asymmetric variant of the title protocol as well as its
elaboration into other oxidative bond-forming processes are
currently ongoing in our laboratories.
́
1265. (d) Wickens, Z. K.; Guzman, P. E.; Grubbs, R. H. Angew. Chem.,
Int. Ed. 2015, 54, 236. (e) Mann, S. E.; Benhamou, L.; Sheppard, T. D.
Synthesis 2015, 47, 3079. (f) Wang, A.; Jiang, H.; Chen, H. J. Am. Chem.
Soc. 2009, 131, 3846. (g) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res.
2012, 45, 851. (h) Liu, G.; Yin, G.; Wu, L. Angew. Chem., Int. Ed. 2008,
47, 4733. (i) Schunk, S. A.; Baltes, C.; Sundermann, A. Catal. Today
2006, 117, 304. (j) Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. J. Am.
Chem. Soc. 2005, 127, 17778. (k) Stahl, S. S. Angew. Chem., Int. Ed. 2004,
43, 3400.
(2) (a) Chen, K.; Zhang, P.; Wang, Y.; Li, H. Green Chem. 2014, 16,
2344. (b) Pandey, G.; Gadre, S. R. Acc. Chem. Res. 2004, 37, 201.
(3) For examples of reductive olefin derivatizations using molecular
oxygen as a reagent, see: (a) Iida, H.; Imada, Y.; Murahashi, S.-I. Org.
Biomol. Chem. 2015, 13, 7599. (b) Imada, Y.; Iida, H.; Kitagawa, T.;
Naota, T. Chem. - Eur. J. 2011, 17, 5908. (c) Teichert, J. F.; den Hartog,
T.; Hanstein, M.; Smit, C.; ter Horst, B.; Hernandez-Olmos, V.; Feringa,
B. L.; Minnaard, A. J. ACS Catal. 2011, 1, 309. (d) Imada, Y.; Kitagawa,
T.; Ohno, T.; Iida, H.; Naota, T. Org. Lett. 2010, 12, 32.
(4) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410.
̈
(5) (a) Liu, G.; Tang, R.; Wang, Z. Catal. Lett. 2014, 144, 717. (b) Cao,
Y.; Yu, H.; Peng, F.; Wang, H. ACS Catal. 2014, 4, 1617.
(6) (a) Conner, E. S.; Crocker, K. E.; Fernando, R. G.; Fronczek, F. R.;
Stanley, G. G.; Ragains, J. R. Org. Lett. 2013, 15, 5558. (b) Spell, M.;
Wang, X.; Wahba, A. E.; Conner, E.; Ragains, J. R. Carbohydr. Res. 2013,
369, 42. (c) Pandey, G.; Soma Sekhar, B. B. V. J. Org. Chem. 1994, 59,
7367.
(7) (a) Pandey, G.; Soma Sekhar, B. B. V.; Bhalerao, U. T. J. Am. Chem.
Soc. 1990, 112, 5650. (b) Pandey, G.; Soma Sekhar, B. B. V. J. Org. Chem.
1992, 57, 4019.
(8) (a) Kratzschmar, F.; Kaßel, M.; Delony, D.; Breder, A. Chem. - Eur.
̈
J. 2015, 21, 7030. (b) Niyomura, O.; Cox, M.; Wirth, T. Synlett 2006,
251. (c) Iwaoka, M.; Tomoda, S. J. Chem. Soc., Chem. Commun. 1992,
1165.
(9) Trost, B. M. Science 1991, 254, 1471.
(10) Martiny, M.; Steckhan, E.; Esch, T. Chem. Ber. 1993, 126, 1671 In
this reference, the reduction potential of 4* was reported as 1.98 V vs
NHE. For a more direct comparison, we have presented the
corresponding reduction potential of 1.74 V vs SCE..
(11) Kunai, A.; Harada, J.; Izumi, J.; Tachihara, H.; Sasaki, K.
Electrochim. Acta 1983, 28, 1361.
(12) (a) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc. 2012, 134,
18577. (b) Shono, T. Electroorganic Chemistry as a New Tool in Organic
Synthesis; Springer Verlag: Heidelberg, 1984.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and compound characterization
(13) For details on the full optimization study, see the Supporting
AUTHOR INFORMATION
Corresponding Author
■
(14) Dippy, J. F. J.; Hughes, S. R. C.; Rozanski, A. J. Chem. Soc. 1959,
2492.
(15) The verisimilitude of this hypothesis is supported by fluorescence
fluorescence intensity of pyrylium salt 4 was plotted against varying
concentrations of both (PhSe)2 and alkene 1d.
Notes
The authors declare no competing financial interest.
(16) (a) Denmark, S. E.; Collins, W. R.; Cullen, M. D. J. Am. Chem. Soc.
2009, 131, 3490. (b) Garratt, D. G.; Schmid, G. H. Can. J. Chem. 1974,
52, 1027.
ACKNOWLEDGMENTS
■
This work was financially supported by the Deutsche
Forschungsgemeinschaft (DFG, Emmy Noether Fellowship to
A.B.) and the Fonds der Chemischen Industrie (FCI,
Chemiefonds Fellowship to S.O. and Ph.D. Fellowship to
C.D.). We thank Prof. Dr. Lutz Ackermann (University of
Gottingen, Germany) for the generous donation of solvents and
technical equipment. We are grateful to F. Kramm (University of
(17) In this context, we speculate that the conversion of intermediate 7
into radical cation 8 may be inhibited by (PhSe)2 at sufficiently high
concentrations of the latter in comparison to the concentration of
intermediate 7. This assumption is supported by the observation that
compound 7a (Nu = AcO, R1 = Et, R2 = CO2Bn) furnishes product 3a
only in low quantities when additional (PhSe)2 is present. We also
hypothesize that intermediate 7 represents the resting state of the
catalytic cycle.
̈
Gottingen, Germany) for providing four of the alkene precursors.
̈
REFERENCES
■
(1) (a) Mei, R.; Wang, H.; Warratz, S.; Macgregor, S. A.; Ackermann, L.
Chem. - Eur. J. 2016, 22, 6759. (b) Bechtoldt, A.; Tirler, C.; Raghuvanshi,
D
Org. Lett. XXXX, XXX, XXX−XXX