REPORTS
27. P. H.-Y. Cheong, C. Y. Legault, J. M. Um, N. Çelebi-Ölçüm,
K. N. Houk, Chem. Rev. 111, 5042 (2011).
28. K. B. Lipkowitz, M. Pradhan, J. Org. Chem. 68, 4648 (2003).
29. P. J. Donoghue, P. Helquist, P.-O. Norrby, O. Wiest,
J. Chem. Theory Comput. 4, 1313 (2008).
30. P. J. Donoghue, P. Helquist, P.-O. Norrby, O. Wiest,
J. Am. Chem. Soc. 131, 410 (2009).
31. C. Allemann, R. Gordillo, F. R. Clemente, P. H.-Y. Cheong,
K. N. Houk, Acc. Chem. Res. 37, 558 (2004).
32. T. Dudding, K. N. Houk, Proc. Natl. Acad. Sci. U.S.A. 101,
5770 (2004).
33. S. E. Denmark, N. D. Gould, L. M. Wolf, J. Org. Chem. 76,
4337 (2011).
34. J. D. Oslob, B. Åkermark, P. Helquist, P.-O. Norrby,
Organometallics 16, 3015 (1997).
35. M. S. Sigman, J. J. Miller, J. Org. Chem. 74, 7633
(2009).
high enantioselectivity and good yield were ob- ing the interplay of two (or more) effects on a
served for aryl methyl ketones, with a modest reaction outcome.
drop in enantioselectivity for electron-poor sub-
strates. Other aryl ketones gave rise to good to
References and Notes
excellent e.r.’s, as highlighted by substrate 2h.
Heteroaromatics were also well tolerated un-
der the reaction conditions, with thiophene- and
furan-derived ketones undergoing highly enantio-
selective propargylation reactions (2i and 2j).
Additionally, an a,b-unsaturated ketone was an
excellent substrate for enantioselective propar-
gylation, leading to a 95:5 e.r. (2p).
In the case of aliphatic ketones, the catalyst
selected on the basis of steric differentiation, giv-
ing higher e.r.’s with increased steric bulk on a
single side of the ketone (2l to 2o). An e.r. of
85:15 observed for 2-hexanone (2l) is relatively
impressive, considering that the catalyst is differ-
entiating a methyl from an n-butyl group. Groups
with substitution at the a-position of the ketone
substantially enhanced the e.r.’s, as highlighted
by ketones with a cyclohexyl (96:4 e.r., 2n) and
a t-butyl group (98:2 e.r., 2o). Furthermore, a
g-butyrolactone (2q) could be synthesized with a
good e.r. from propargylation of an aliphatic ke-
tone with a pendant ester.
Our data suggest that steric-electronic corre-
lations provide a means for efficient optimization
of a catalytic system and are evidence for a syn-
ergistic relationship between these two classically
independent variables in reactions. This is es-
pecially attractive for optimizing reactions with
limited detailed mechanistic and structural
understanding and, considering that the model-
ing is tied to basic physical organic precepts, a
greater understanding of the underlying fea-
tures of asymmetric catalysis should result. The
application of this method is not limited to asym-
metric catalysis but can potentially be applied
to broad areas of chemistry dependent on evaluat-
1. E. V. Anslyn, D. A. Dougherty, in Modern Physical
Organic Chemistry, J. Murdzek, Ed. (University Science,
Sausalito, CA, 2006), pp. 441–482.
2. M. S. Newman, Ed., Steric Effects in Organic Chemistry
(Wiley, New York, 1956).
3. J. E. Jones, Proc. R. Soc. London Ser. A 106, 441 (1924).
4. J. E. Jones, Proc. R. Soc. London Ser. A 106, 463 (1924).
5. L. P. Hammett, J. Am. Chem. Soc. 59, 96 (1937).
6. C. Hansch, A. Leo, R. W. Taft, Chem. Rev. 91, 165 (1991).
7. C. Hansch, A. Leo, in Exploring QSAR: Fundamentals and
Applications in Chemistry and Biology, S. R. Heller,
Ed. (American Chemical Society, Washington, DC, 1995),
pp. 69–96.
8. R. W. Taft Jr., J. Am. Chem. Soc. 74, 3120 (1952).
9. M. Charton, J. Am. Chem. Soc. 97, 1552 (1975).
10. M. Charton, J. Am. Chem. Soc. 97, 3691 (1975).
11. M. Charton, J. Am. Chem. Soc. 97, 3694 (1975).
12. M. Charton, J. Org. Chem. 41, 2217 (1976).
13. E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Eds.,
Comprehensive Asymmetric Catalysis I-III (Springer,
New York, 1999).
14. P. J. Walsh, M. C. Kozlowski, in Fundamentals of
Asymmetric Catalysis, J. Murdzek, Ed. (University Science,
Sausalito, CA, 2009), pp. 1–240.
15. A. L. Casalnuovo, T. V. RajanBabu, T. A. Ayers,
T. H. Warren, J. Am. Chem. Soc. 116, 9869 (1994).
16. D. W. Nelson et al., J. Am. Chem. Soc. 119, 1840 (1997).
17. M. Palucki et al., J. Am. Chem. Soc. 120, 948 (1998).
18. K. H. Jensen, M. S. Sigman, J. Org. Chem. 75, 7194 (2010).
19. M. C. Kozlowski, S. L. Dixon, M. Panda, G. Lauri,
J. Am. Chem. Soc. 125, 6614 (2003).
20. M. C. Kozlowski, M. Panda, J. Org. Chem. 68, 2061 (2003).
21. J. C. Ianni, V. Annamalai, P.-W. Phuan, M. Panda,
M. C. Kozlowski, Angew. Chem. 118, 5628 (2006).
22. K. B. Lipkowitz, C. A. D’Hue, T. Sakamoto, J. N. Stack,
J. Am. Chem. Soc. 124, 14255 (2002).
23. S. J. Zuend, E. N. Jacobsen, J. Am. Chem. Soc. 131,
15358 (2009).
24. C. Uyeda, E. N. Jacobsen, J. Am. Chem. Soc. 133, 5062
(2011).
25. S. J. Zuend, E. N. Jacobsen, J. Am. Chem. Soc. 129,
15872 (2007).
26. P.-O. Norrby, T. Rasmussen, J. Haller, T. Strassner,
K. N. Houk, J. Am. Chem. Soc. 121, 10186 (1999).
36. J. L. Gustafson, M. S. Sigman, S. J. Miller, Org. Lett. 12,
2794 (2010).
37. J. J. Miller, M. S. Sigman, Angew. Chem. Int. Ed. 47,
771 (2008).
38. K. C. Harper, M. S. Sigman, Proc. Natl. Acad. Sci. U.S.A.
108, 2179 (2011).
39. The resultant Cr(III)-alkoxide releases product through
reaction with TMSCl and Mn subsequently reduces the
catalyst to Cr(II).
40. C.-H. Ding, X.-L. Hou, Chem. Rev. 111, 1914 (2011).
41. S.-L. Shi, L.-W. Xu, K. Oisaki, M. Kanai, M. Shibasaki,
J. Am. Chem. Soc. 132, 6638 (2010).
42. K. R. Fandrick et al., J. Am. Chem. Soc. 133, 10332
(2011).
43. B. List, Tetrahedron 58, 5573 (2002).
44. J. J. Miller, M. S. Sigman, J. Am. Chem. Soc. 129, 2752
(2007).
45. Table S2 contains the raw data used to initiate the
modeling process.
46. See supporting material on Science Online.
47. S. N. Deming, S. L. Morgan, Experimental Design: A
Chemometric Approach (Elsevier, New York, ed. 2, 1993).
Acknowledgments: Supported by NSF grant CHE-0749506.
Supporting Online Material
Materials and Methods
Tables S1 to S26
References (48, 49)
14 April 2011; accepted 13 July 2011
10.1126/science.1206997
Experimental psychologists have repeatedly
demonstrated that positive and negative affect are
independent dimensions. Positive affect (PA) in-
cludes enthusiasm, delight, activeness, and alert-
ness, whereas negative affect (NA) includes distress,
fear, anger, guilt, and disgust (6). Thus, low PA
indicates the absence of positive feelings, not the
presence of negative feelings.
Diurnal and Seasonal Mood Vary
with Work, Sleep, and Daylength
Across Diverse Cultures
Scott A. Golder* and Michael W. Macy
Laboratory studies have shown that diurnal
mood swings reflect endogenous circadian rhythms
interacting with the duration of prior wakefulness
We identified individual-level diurnal and seasonal mood rhythms in cultures across the globe,
using data from millions of public Twitter messages. We found that individuals awaken in a good or sleep. The circadian component corresponds
mood that deteriorates as the day progresses—which is consistent with the effects of sleep and
circadian rhythm—and that seasonal change in baseline positive affect varies with change in
to change in core body temperature, which is lowest
at the end of the night and peaks during late
daylength. People are happier on weekends, but the morning peak in positive affect is delayed by 2 afternoon. The sleep-dependent component is
hours, which suggests that people awaken later on weekends.
elevated at waking and declines throughout the
day (7). Other studies have variously observed a
ndividual mood is an affective state that is hormones (e.g., cortisol) (3). Mood is also ex- single PA peak 8 to 10 hours after waking (8), a
important for physical and emotional well- ternally modified by social activity, such as daily
I
being, working memory, creativity, decision- routines of work, commuting, and eating (4, 5).
Department of Sociology, Cornell University, Ithaca, NY
14853, USA.
making (1), and immune response (2). Mood is Because of this complexity, accurate measure-
influenced by levels of dopamine, serotonin, and ment of affective rhythms at the individual level
other neurochemicals (1), as well as by levels of has proven elusive.
*To whom correspondence should be addressed. E-mail:
1878