ORGANIC
LETTERS
2011
Vol. 13, No. 24
6456–6459
Scope and Mechanistic Studies of
Electrophilic Alkoxyetherification
Jie Chen, Shuyun Chng, Ling Zhou, and Ying-Yeung Yeung*
Department of Chemistry, National University of Singapore, 3 Science Drive 3,
Singapore 117543
Received October 13, 2011
ABSTRACT
A one-pot electrophilic alkoxyetherification using an olefin, a cyclic ether, a carboxylic acid, and N-bromosuccinimide has been developed. The
oxygen nucleophiles, the olefinic substrates, and the cyclic ether partners can be varied to produce a wide range of alkoxyether derivatives.
Multicomponent reactions (MCRs) are important and
useful synthetic methods that offer an opportunity for
building complex molecules in a convergent and atom-
Scheme 1. Bromonium Ion Promoted Electrophilic Cascades
economic manner.1 A major focus of MCR is on the
development of new reactions,2 and many endeavors to
develop green and sustainable processes have been carried
out.3 However, electrophilic MCRs have been less re-
ported, partly because of the common incompatibility of
electrophiles with the other components.4
Further investigation using acetic acid as the nucleo-
philic partner showed that the reaction was highly
dependent on the concentration, in which a higher
reaction yield (86%) of the desired product was obtained
under a diluted (0.04 M) condition (Table 1, entry 3).
The reaction was readily scalable without loss of effi-
ciency (Table 1, entry 4).6
In the course of our effort on the development of
electrophilic bromine initiated MCR, recently we reported
a novel electrophilic cascade using an olefin, a cyclic ether,
a sulfonamide, and NBS. During that study, we also
disclosed that instead of a sulfonamide, an oxygen nucleo-
phile, which contained an acidic proton, could also partici-
pate in this cascade (Scheme 1).5
(1) For selected reviews, see: (a) Ugi, I.; Domling, A.; Horl, W.
€
(4) For selected electrophilic MCRs, see: (a) Serguchev, Y. A.;
PonomarenkoM. V.; Lourie, L. F.; Chernega, A. N. J. Fluorine Chem.
2003, 123, 207–215. (b) Nair, V.; Menon, R. S.; Beneesh, P. B.; Sreekumar,
V.; Bindu, S. Org. Lett. 2004, 6, 767–769. (c) Nair, V.; Beneesh, P. B.;
Sreekumar, V.; Bindu, S.; Menon, R. S.; Deepthi, A. Tetrahedron Lett.
2005, 46, 201–203. (d) Yeung, Y. Y.; Gao, X. R.; Corey, E. J. J. Am.
Chem. Soc. 2006, 128, 9644–9645. (e) Church, T. L.; Byrne, C. M.;
Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2007, 129, 8156–
8162. (f) Hajra, S.; Bar, S.; Sinha, D.; Maji, B. J. Org. Chem. 2008, 73,
4320–4322. (g) Abe, T.; Takeda, H.; Miwa, Y.; Yamada, K.; Yanada,
R.; Ishikura, M. Helv. Chim. Acta 2010, 93, 233–241. (h) Braddock,
D. C.; Millan, D. S.; Perez-Fuertes, Y.; Pouwer, R. H.; Sheppard,
R. N.; Solanki, S.; White, A. J. P. J. Org. Chem. 2009, 74, 1835–1841.
(i) Bonney, K. J.; Braddock, D. C.; White, A. J. P.; Yaqoob, M. J. Org.
Chem. 2011, 76, 97–104. (j) Snyder, S. A.; Treitler, D. S.; Bruchks, A. P.;
Sattler, W. J. Am. Chem. Soc. 2011, 133, 15898–15901.
Endeavour 1994, 18, 115–122. (b) Domling, A.; Ugi, I. Angew. Chem.,
Int. Ed. 2000, 39, 3168–3210. (c) Multicomponent Reactions; Zhu, J.,
ꢀ
Bienayme, H., Eds.; Wiley-VCH: Weinheim, 2005. (d) Domling, A. Chem.
€
Rev. 2005, 106, 17–89. (e) Domling, A. Chem. Rev. 2005, 106, 17–89. (f)
Toure, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439–4486.
(g) Sunderhaus, J. D.; Martin, S. F. Chem.;Eur. J. 2009, 15, 1300–1308.
ꢀ
(2) (a) Ganem, B. Acc. Chem. Res. 2009, 42, 463–472. (b) Ramon,
D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–1634.
(3) (a) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey,
G. R.; Leazer, J. J. L.; Linderman, R. J.; Lorenz, K.; Manley, J.;
Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007,
9, 411–420. (b) Rosamilia, A. E.; Scott, J. L.; Strauss, C. R. Org. Lett.
2005, 7, 1525–1528. (c) Rosamilia, A. E.; Strauss, C. R.; Scott, J. L. Pure
Appl. Chem. 2007, 79, 1869–1877. (d) Shi, D. Q.; Ni, S. N.; Yang, F.; Ji,
S. J. J. Heterocycl. Chem. 2008, 45, 1275–1280. (e) Andriushchenko,
A. Y.; Desenko, S. M.; Chernenko, V. N.; Chebanov, V. A. J. Hetero-
cycl. Chem. 2011, 48, 365–367.
(5) Zhou, L.; Tan, C. K.; Zhou, J.; Yeung, Y.-Y. J. Am. Chem. Soc.
2010, 132, 10245–10247.
r
10.1021/ol202751s
Published on Web 11/16/2011
2011 American Chemical Society