4
Tetrahedron Letters
Synth. Catal. 2005, 347, 811.
7. Katayama, T.; Kamata, K.; Yamaguchi, K.; Mizuno, N.
ChemSusChem 2009, 2, 59.
8. Girard, C.; nen, E.; Aufort, M.; Beauvi_re, S.; Samson, A.;
Herscovici, J. Org. Lett. 2006, 8, 1689.
catalyst did not change considerably even after fifth cycle.
This clearly indicates the unaltered efficiency of the
catalyst up to five cycles (Figure 4).
9. (a) Alix, A.; Chassaing, S.; Pale, P.; Sommer, J. Tetrahedron
2008, 64, 8922; (b) Chassaing, S.; Sani Souna Sido, A.; Alix, A.;
Kumarraja, M.; Pale, P.; Sommer, J. Chem. Eur. J. 2008, 14,
6713.
10. Lipshutz, B. H.; Taft, B. R.; Angew. Chem. 2006, 118, 8415;
Angew. Chem. Int. Ed. 2006, 45, 8235.
11. Hardy, J. J. E.; Hubert, S.; Macquarrie, D. J.; Wilson, A. J. Green
Chem. 2006, 8, 853.
12. Chao Shen, Jun Xu, Wenbo Yu, Pengfei Zhang Green Chem.
2014, 16, 3007.
13. Makhubela, B. C. E.; Jardine A.; Smith, G. S. Green Chem. 2012,
14, 338.
Figure 4. SEM-analysis of (a) fresh CS-CuSO4 catalyst. (b) reused CS-
CuSO4 catalyst after 5th cycle.
14. Kadib, A. E.; Molvinger, K.; Bousmina, M.; Brunel, D. Org. Lett.
2010, 12, 948.
In conclusion, the present protocol involves a
shorter reaction pathway which helps in the reduction of
reaction steps as well as workup and avoids the isolation of
unstable azides with the use of recyclable and reusable
chitosan@CuSO4 catalyst in water as a green solvent to
synthesize 1,4-disubstituted-1,2,3-triazoles with high
regioselectivity.
15. (a) Peirano, B. F.; Thierry, V.; Quignard, F.; Rabitzer, M. Guibal,
E. J. Membr. Sci. 2009, 329, 30; (b) Macquarrie D. J.; Hardy, J. J.
E. Ind. Eng. Chem. Res. 2005, 44, 8499; (c) Guibal, E.; Thierry,
V.; Peirano, B. F. Ion Exch. Solvent Extr. 2007, 18, 151; (d) Yi,
S.-S.; Lee, D.-H.; Sin E.; Lee, Y.-S. Tetrahedron Lett. 2007, 48,
6771; (e) Leonhardt, S. E. S.; Stolle, A.; Ondruschka, B.;
Cravotto, G.; De Leo, C.; Jandt, K. D.; Keller, T. F. Appl. Catal.
A, 2010, 379, 30.
16. (a) Kumar B. S. P. A.; Madhav, B.; Reddy, K. H. V.; Nageswar,
Y. V. D. Tetrahedron Lett. 2011, 52, 2862; (b) Anil Kumar, B. S.
P.; Harsha Vardhan Reddy, K.; Madhav, B.; Ramesh, K.;
Nageswar, Y. V. D. Tetrahedron Lett. 2012, 53, 4595.
Acknowledgement
17. (a) Reddy, K. H. V.; Reddy, V. P.; Shankar, J.; Madhav, B.;
Kumar, B. S. P. A.; Nageswar, Y. V. D. Tetrahedron Lett. 2011,
52, 2679; (b) Reddy, K. H. V.; Reddy, V. P.; Shankar, J.;
Nageswar, Y. V. D. Synlett. 2011, 9, 1268; (c) Reddy, K. H. V.;
Kumar, A. A.; Kranthi, G.; Nageswar, Y. V. D. Beilstein J. Org.
Chem. 2011, 7, 886; (d) Satish, G.; Reddy, K. H. V.; Ramesh, K.;
Karnakar, K. Tetrahedron Lett. 2012, 53, 2518; (e) Reddy, K. H.
V.; Satish, G.; Ramesh, K.; Karnakar, K.; Nageswar, Y. V. D.
Chem. Lett. 2012, 41, 585; (f) Madhav, B.; Narayana Murthy, S.;
Anil Kumar, B.S.P.; Ramesh, K.; Nageswar, Y.V.D. Tetrahedron
Lett. 2012, 53, 3835; (g) Ramesh, K.; Karnakar, K.; Satish, G.;
Anil Kumar, B. S. P.; Nageswar, Y. V. D. Tetrahedron Lett. 2012,
53, 6936; (h) Harsha Vardhan Reddy, K.; Satish, G.; Prakash
Reddy, V.; Anil Kumar, B. S. P.; Nageswar Y. V. D. RSC Adv.
2012, 2, 11084; (i) Satish, G.; Reddy, K. H. V.; Ramesh, K.; Anil
kumar, B. S. P.; Nageswar Y. V. D. Tetrahedron Lett. 2014, 55,
2596; (j) Reddy, K. H. V.; Satish, G.; Ramesh, K.; Karnakar, K.;
Nageswar, Y. V. D. Tetrahedron Lett. 2012, 53, 3061; (k) Satish,
G.; Reddy, K. H. V.; Anil kumar, B. S. P.; Shankar, J.; Uday
kumar, R.; Nageswar Y. V. D. Tetrahedron Lett., 2014, 55, 5533;
(l) Harsha Vardhan Reddy, K.; Anil Kumar, B. S. P.; Prakash
Reddy, V.; Uday kumar, R.; Nageswar Y. V. D. RSC Adv. 2014,
4, 45579; (m) Swapna, K.; Murthy, S. N.; Jyothi, M. T.;
Nageswar, Y. V. D. Org. Bio. Chem. 2011, 9, 5989.
The authors thank the Council of Scientific and
Industrial Research (CSIR), New Delhi for financial
assistance.
References
1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B.; Angew. Chem. 2001,
113, 2056.
2. (a) Whiting, M.; Muldoon, J.; Lin, Y.-C.; Silverman, S. M.;
Lindstrom, W.; Olson, A. J.; Kolb, H. C.; Finn, M. G.; Sharpless,
K. B.; Elder J. H.; Fokin, V. V. Angew. Chem., Int. Ed. 2006, 45,
1435; (b) Giffin, M. J.; Heaslet, H.; Brik, A.; Lin, Y. C.; Cauvi,
G.; Wong, C.-H.; McRee, D. E.; Elder, J. H.; Stout, C. D.;
Torbett, B. E. J. Med. Chem 2008, 51, 6263.
3. (a) PKrez-Balderas, F.; Ortega-MuLoz, M.; Morales-Sanfrutos, J.;
HernMndez-Mateo, F.; Calvo-Flores, F. G.; Calvo-AsNn, J. A.;
IsacGarcNa, J.; Santoyo-GonzMlez, F. Org. Lett. 2003, 5, 1951;
(b) Rodionov, V. O.; Presolsky, S. I.; Gardinier, S.; Lim, Y.-H.;
Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12696;(c) Gupta, S. S.;
Kuzelka, J.; Singh, P.; Lewis, W. G.; Manchester, M.; Finn, M. G.
Bioconjugate Chem. 2005, 16, 1572; (d) Chan, T. R.; Hilgraf, R.;
Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853; (e)
Gerard, B.; Ryan, J.; Beeler, A. B.; Porco, Jr. J. A. Tetrahedron
2006, 62, 6405.
18. Nasir Baig R. B.; Varma, R. S. Green Chem. 2013, 15, 1839.
19. Preparation of Chitosan@copper catalyst:The catalyst was
prepared by the method described by Chao shen et al.12 5 gm of
Chitosan was suspended in a 250 ml beaker containing 100 ml of
water. 1 gm of copper salt was added to this suspension with
stirring. After 3 hr the catalyst was separated by decantation,
washed with water several times to remove excess of copper salt,
and was dried under vacuum at 60 °C for 12 hr to give the
chitosan@copper catalyst.
4. (a) Aucagne, V.; Leigh, D. A.; Org. Lett., 2006, 8, 4505; (b)
Siemsen, P.; Livingston R. C.; Diederich, F. Angew. Chem., Int.
Ed. 2000, 39, 2632.
5. Meldal, M.; Tornoe, W. Chem. Rev. 2008, 108, 2952.
6. (a) Huisgen, R. ; Szeimies, G.; Moebius, L. Chem. Ber., 1965, 98,
4014; (b) Huisgen, R. Pure Appl. Chem. 1989, 61, 613; (c)
Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565; (d)
Pressly, E. D.; Amir R. J.; Hawker, C. J. J. Polym. Sci., Part A:
Polym. Chem. 2011, 49, 814; (e) Cintas, P.; Barge, A.;
Tagliapietra, S.; Boffa L.; Cravotto, G.; Nat. Protoc. 2010, 5, 607;
(f ) Sarkar, A.; Mukherjee, T.; Kapoor, S. J. Phys. Chem. C, 2008,
112, 3334; (g) Raut, D.; Wankhede, K.; Vaidya, V.; Bhilare, S.;
Darwatkar, N.; Deorukhkar, A.; Trivedi G.; Salunkhe, M. Catal.
Commun. 2009, 10, 1240; (h) Molteni, G.; Bianchi, C. L.;
Marinoni, G.; Santo, N.; Ponti, A. New J. Chem. 2006, 30, 1137;
(i) Pachón, L. D.; van Maarseveen J. H.; Rothenberg, G. Adv.
20. Procedure for the synthesis of 1,4-disubstituted 1, 2, 3-triazoles:
Aryl boronic acid (1 mmol), phenyl acetylene (1 mmol) and NaN3
(1.2 mmol) in H2O (2 mL) were placed in a 10 ml RB flask to
which 10 mol% chitosan@CuSO4catalyst was added. The reaction
mixture was stirred at room temperature and monitored by TLC
until total conversion of the starting materials. After completion
of the reaction, water (20 mL) was added to the resulting reaction
mixture followed by extraction with EtOAc (4x10 mL). Catalyst
was separated by simple decantation and dried for 3 hr at 60 °C