ACS Combinatorial Science
Research Article
(17) Valade, A.; Urban, D.; Beau, J.-M. Target-assisted Selection of
galactosyltransferase binders from dynamic combinatorial libraries. An
unexpected solution with restricted amounts of the enzyme.
ChemBioChem. 2006, 7, 1023−1027.
indicated a variety of interesting activities although full
evaluation of the libraries is still under way (see http://www.
(18) Townsend, A. P.; Roth, S.; Williams, H. E. L.; Stylianou, E.;
Thomas, N. R. New S-adenosyl-L-methionine analogues: Synthesis and
reactivity studies. Org. Lett. 2009, 11, 2976−2979.
ASSOCIATED CONTENT
* Supporting Information
■
S
Additional material as described in the text. This material is
(19) Kolb, M.; Danzin, C.; Barth, J.; Claverie, N. Synthesis and
biochemical and properties of chemically stable product analogues of
the reaction catalyzed by S-adenosyl l-methionine decarboxylase. J.
Med. Chem. 1982, 25, 550−556.
(20) Kolb, M.; Barth, J. Synthesis of 5′-[(3-aminooxypropyl)amino]-
5′-deoxyadenosine. Lieb. Ann. Chem. 1985, 5, 1036−1040.
(21) Lever, O. W., Jr.; Vestal, B. R. Bridged isocytosine-adenosine
compounds: synthesis and antibacterial evaluation. J. Heterocycl. Chem.
1986, 23, 901−903.
(22) Minnick, A. A.; Kenyon, G. L. General synthetic approach to
stable nitrogen analogs of S-adenosylmethionine. J. Org. Chem. 1988,
53, 4952−61.
(23) Kvasyuk, E. I.; Kulak, T.; Mikhailopulo, I. A.; Charubala, R.;
Pfleiderer, W. Nucleotides. Part XLV. Synthesis of new (2′−5′)
adenylate trimers, containing 5′-amino-5′-deoxyadenosine residues at
the 5′-end of the oligoadenylate chain, and of its analogs, carrying a 9-
[(2-hydroxyethoxy)methyl]adenine residue at the 2′-terminus. Helv.
Chim. Acta 1995, 78, 1777−84.
(24) Gareava, L. D.; Goryunova, O. V.; Yartseva, I. V.; Mashalova, N.
A.; Mel’nik, S. Ya. Synthesis of modified purine ribonucleosides from
3′(5′)-O-succinyladenosine and 5′-amino-5′-deoxyadenosine. Bioorg.
Khim. 1995, 21, 717−723.
(25) Ceulemans, G.; Vandendriessche, F.; Rozenski, J.; Herdewijn, P.
Synthesis of an uncharged cAMP analog. Nucleosides Nucleotides 1995,
14, 117−127.
(26) Comstock, L. R.; Rajski, S. R. Expeditious synthesis of aziridine-
based cofactor mimics. Tetrahedron 2002, 58, 6019−6026.
(27) Ciuffreda, P.; Loseto, A.; Santaniello, E. Deamination of 5′-
substituted-2′,3′-isopropylidene adenosine derivatives catalyzed by
adenosine deaminase (ADA, EC 3.5.4.4) and complementary
enzymatic biotransformations catalyzed by adenylate deaminase
(AMPDA, EC 3.5.4.6): a viable route for the preparation of 5′-
substituted inosine derivatives. Tetrahedron 2002, 58, 5767−5771.
(28) Manfredini, S.; Solaroli, N.; Angusti, A.; Nalin, F.; Durini, E.;
Vertuani, S.; Pricl, S.; Ferrone, M.; Spadari, S.; Focher, F.; Verri, A.; De
Clercq, E.; Balzarini, J. Design and synthesis of phosphonoacetic acid
(PPA) ester and amide bioisosters of ribofuranosylnucleoside
diphosphates as potential ribonucleotide reductase inhibitors and
evaluation of their enzyme inhibitory, cytostatic, and antiviral activity.
Antiviral Chem. Chemother. 2003, 4, 183−194.
(29) Jagtap, P. G.; Southan, G. J.; Baloglu, E.; Ram, S.; Mabley, J. G.;
Marton, A.; Salzman, A.; Szabo, C. The discovery and synthesis of
novel adenosine substituted 2,3-dihydro-1H-isoindol-1-ones: potent
inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1). Bioorg. Med.
Chem. Lett. 2004, 14, 81−85.
(30) Enkvis, E.; Lavogina, D.; Raidaru, G.; Vaasa, A.; Viil, I.; Lust, M.;
Viht, K.; Uri, A. Conjugation of adenosine and hexa-(D-arginine) leads
to a nanomolar bisubstrate-analog inhibitor of basophilic protein
kinases. J. Med. Chem. 2006, 49, 7150−7159.
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Department of Chemistry, University of Alabama at
Birmingham, Birmingham, AL 35294
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This investigation was supported by NIH Grant 1P41
GM086163-01 (titled Pilot-Scale Libraries Based on Nucleo-
side Templates for the ML Initiative, Robert C. Reynolds, PI.).
We thank James M. Riordan, Jackie Truss, Mark Richardson,
and David Poon of the Molecular and Spectroscopy Section of
Southern Research Institute for analytical and spectral data.
REFERENCES
■
(1) Robins, R. K.; Revankar, G. R. Purine analogs and related
nucleosides and nucleotides as antitumor agents. Med. Res. Rev. 1985,
5, 273−296.
(2) Plunkett, W.; Saunders, P. P. Metabolism and action of purine
nucleoside analogs. Pharmacol. Ther. 1991, 49, 239−268.
(3) Huryn, D. M.; Okabe, M. AIDS-driven nucleoside chemistry.
Chem. Rev. 1992, 92, 1745−1768.
(4) Kolesar, J. M.; Morris, A. K.; Kuhn, J. G. Purine nucleoside
analogues: fludarabine, pentostatin, and cladribine: Part 2: Pentostatin.
J. Oncol. Pharm. Pract. 1996, 2, 211−224.
(5) Mansour, T. S.; Storer, R. Antiviral nucleosides. Curr. Pharm. Des.
1997, 3, 227−264.
(6) Tan, X.; Chu, C. K.; Boudinot, F. D. Development and
optimization of anti-HIV nucleoside analogs and prodrugs: A review of
their cellular pharmacology, structure−activity relationships and
pharmacokinetics. Adv. Drug Delivery Rev. 1999, 39, 117−151.
(7) Cheson, B. D.; Keating, M. J.; Plunkett, W. Nucleoside Analogues
in Cancer Therapy; Marcel Dekker: New York, 1997; Vol. 12.
(8) Shuter, J. Antifungal and antiviral agents: A review. Cancer Invest.
1999, 17, 145−152.
(9) Isono, K. Current progress on nucleoside antibiotics. Pharmacol.
Ther. 1991, 52, 269−286.
(10) Isono, K. Nucleoside antibiotics: Structure, biological activity
and biosynthesis. J. Antibiot. 1988, 41, 1711−1739.
(11) Knapp, S. Synthesis of complex nucleoside antibiotics. Chem.
Rev. 1995, 95, 1859−1876.
(31) Bisseret, P.; Thielges, S.; Bourg, S.; Miethke, M.; Marahiel, M.
A.; Eustache, J. Synthesis of a 2-indolylphosphonamide derivative with
inhibitory activity against yersiniabactin biosynthesis. Tetrahedron Lett.
2007, 48, 6080−6083.
(32) Dowden, J.; Hong, W.; Parry, R. V.; Pike, R. A.; Ward, S. G.
Toward the development of potent and selective bisubstrate inhibitors
of protein arginine methyltransferases. Bioorg. Med. Chem. Lett. 2010,
20, 2103−2105.
(12) Rosemeyer, H. The chemodiversity of purine as a constituent of
natural products. Chem. Biodiversity 2004, 1, 361−401.
(13) Lagoja, I. M. Pyrimidines as constituent of natural biologically
active compounds. Chem. Biodiversity 2005, 2, 1−50.
(14) Herforth, C.; Wiesner, J.; Franke, S.; Golisade, A.; Jomaa, A.;
Link, A. Antimalarial activity of N6-substituted adenosine derivatives. J.
Comb. Chem. 2002, 4, 302−314.
(33) Mori, S.; Iwase, K.; Iwanami, N.; Tanaka, Y.; Kagechika, H.;
Hirano, T. Development of novel bisubstrate-type inhibitors of histone
methyltransferase SET7/9. Bioorg. Med. Chem. 2010, 18, 8158−8166.
(34) Dowden, J.; Pike, R. A.; Parry, R. V.; Hong, W.; Muhsen, U. A.;
Ward, S. G. Small molecule inhibitors that discriminate between
(15) Winans, K. A.; Bertozzi, C. R. An inhibitor of the human UDP-
GlcNAc 4-epimerase identified from a uridine-based library: A strategy
to inhibit O-linked glycosylation. Chem. Biol. 2002, 9, 113−129.
(16) Epple, R.; Kudirka, R.; Greenberg, W. A. Solid-phase synthesis
of nucleoside analogues. J. Comb. Chem. 2003, 5, 292−310.
E
dx.doi.org/10.1021/co300127z | ACS Comb. Sci. XXXX, XXX, XXX−XXX