R. Tucaliuc et al. / Tetrahedron Letters 52 (2011) 6439–6442
6441
4'
Cl
C6H4Cl-4
N
C6H4Cl-4
C6H4Cl-4
11
10
COOH
CF3
1'
7
7a
5
O
C
N
8
N
N
H2C
C
N
N
H
Cl
H
TEA
4
N
CF3
N
H
Br
1 O
Ha
Hb
H2C
CH
CH
COC6H4Cl-4
3
2a
2
COC6H4Cl-4
COC6H4Cl-4
O
8
6
7
Scheme 3. Reaction pathway of pyrimidinium ylides with 2-(trifluoromethyl)acrylic acid.
13
12
O
COC6H4Cl-4
COC6H4Cl-4
COOH
C
7
Cl
1
H
H
N
N
H
H2C
CH
C
H
N
H
H
N
N
2
3
N
N
N
H
8
CF3
H
-4[H+]
4
2a
- CO2
H
CF3
6b
6a
CF3
CF3
HOOC
10
6
COC6H4Cl-4
5
9
11
12
Scheme 4. Reaction pathway of phthalazinium ylides with 2-(trifluoromethyl)acrylic acid.
H6), 8.77 (s, 1H, H2).13C NMR (CDCl3, 100 MHz): d 116.81 (C8),
119.78 (C7), 121.61 (C6), 124.57 (CF3), 125.37 (C3), 126.16 (C6a),
128.27 (C6b), 128.79 (C13), 129.62 (C4), 131.05 (C12), 133.63
(C5), 137.18 (C11), 138.98 (C14), 146.49 (C2), 183.06 (C10).
Acknowledgment
This work was co-financed from the European Social Fund Sec-
toral Operational Human Resources Development 2007-2013, pro-
ject number POSDRU/I.89/1.5/S62371 Postdoctoral School in
Agriculture and Veterinary Medicine area.
Supplementary data
Figure 3. The ORTEP diagram of compound 12 including atom numbering scheme.
Supplementary data associated with this article can be found, in
J = 11.2 Hz, 1H, H4), 5.14–5.12 (dd, J = 7.6, J = 8.0 Hz, 1H, H7a),
6.92–6.91 (dd, J = 4.8 Hz, 1H, H6), 7.43–7.41 (d, J = 8.8 Hz, 2H,
H11), 8.10–8.08 (d, J = 8.8 Hz, 2H, H10). 13C NMR (CDCl3,
100 MHz): d 24.73 (C7), 33.89 (C3), 58.83 (C2a), 65.86 (C7b),
71.27 (C7a), 72.43 (C4), 123.33 (CF3), 128.87 (C11), 130.59 (C10),
134.07 (C9), 139.79 (C12), 142.30 (C6), 170.31 (C2), 192.02 (C8).
Compound (5a): White crystals, mp 140–142 °C. IR (KBr, cmꢀ1):
3044, 2982, 1778, 1688, 1590, 1510, 1475, 1182. 1H NMR (CDCl3,
400 MHz): d 2.27–2.22 (dd, J = 4.8, J = 17.2 Hz, 1H, H700), 2.84–
2.80 (dd, J = 2.8, J = 14.4 Hz, 1H, H3b), 2.76–2.70 (dd, J = 4.0,
J = 7.2, J = 17.2 Hz, 1H, H70), 2.92–2.86 (dd, J = 9.2, J = 14.4 Hz, 1H,
H3a), 4.42–4.41 (d, J = 6.0 Hz, 1H, H7b), 5.04–5.03 (d, J = 2.8 Hz,
1H, H4), 5.43–5.40 (dd, J = 4.0, J = 5.2 Hz, 1H, H7a), 6.83–6.82 (dd,
J = 4.8 Hz, 1H, H6), 7.48–7.46 (dd, J = 8.8 Hz, 2H, H11), 7.99–7.97
(dd, J = 8.8 Hz, 2H, H10).13C NMR (CDCl3, 100 MHz): d 24.00 (C7),
32.26 (C3), 62.23–61.40 (C2a), 63.28 (C7b), 69.80 (C7a), 72.10
(C4), 125.23–122.43 (CF3), 129.20 (C11), 130.56 (C10), 132.84
(C12), 135.77 (C6), 140.44 (C9), 171.06 (C2), 194.31 (C8).
Compound (8): White-beige crystals, mp 218–220 °C. 1H NMR
(CDCl3, 400 MHz): d 2.00–1.96 (dd, 1H, H7), 3.04–3.01 (dd, 1H,
H3b), 3.07–3.04 (dd, 1H, H3a), 4.82–4.80 (d, 1H, H7b), 5.63–5.62
(d, 1H, H7a), 6.00–5.98 (d, 1H, H4), 7.45–7.43 (dd, J = 8.0 Hz, 2H,
H11), 7.72–7.67 (m, 5H, H1, 2H2, 3H3), 7.74–7.73 (d, 1H, H5),
8.09–8.07 (dd, J = 8.0 Hz, 2H, H10).
Compound (12): White crystals, mp 172–174 °C. 1H NMR
(CDCl3, 400 MHz): d 7.42 (s, 1H, H8), 7.51–7.49 (d, J = 8.4 Hz, 2H,
H13), 7.78–7.75 (dd, J = 7.6 Hz, 1H, H4), 7.89–7.87 (d, J = 8.4 Hz,
2H, H12), 7.95–7.91 (dd, 2H, H3, H5), 8.45–8.43 (d, J = 7.2 Hz, 1H,
References and notes
1. (a) Fan, S. Y.; Zeng, Z. B.; Mi, C. L.; Zhou, X. B.; Yan, H.; Gong, Z. H.; Li, S. Bioorg.
Med. Chem. 2009, 17, 621–624; (b) De Clercq, E. Nat. Rev. Drug Disc. 2007, 6,
1001–1018.
2. (a) Zbancioc, A. M.; Zbancioc, G.; Tanase, C.; Miron, A.; Ursu, C.; Mangalagiu, I. I.
Lett. Drug Des. Discov. 2010, 7, 644–649; (b) Pogacic, V.; Bullock, A. N.; Fedorov,
O.; Filippakopoulos, P.; Gasser, C.; Biondi, A.; Meyer, S.; Knapp, S.; Schwaller, J.
Cancer Res. 2007, 67, 6916–6924.
3. (a) Kumar, D.; Carron, R.; De La Calle, C.; Jindal, D. P.; Bansal, R. Acta Pharm.
2008, 58, 393–405; (b) Demirayak, S.; Karaburn, A. C.; Beis, R. Eur. J. Med. Chem.
2004, 39, 1089–1095.
4. (a) Mantu, D.; Luca, M. C.; Moldoveanu, C.; Zbancioc, G.; Mangalagiu, I. I. Eur. J.
Med. Chem. 2010, 45, 5164–5168; (b) Butnariu, R.; Mangalagiu, I. I. Bioorg. Med.
Chem. 2009, 17, 2823; (c) Nagawade, R. R.; Khanna, V. V.; Bhagwat, S. S.; Shinde,
D. B. Eur. J. Med. Chem. 2005, 40, 1325–1330.
5. Mangalagiu, I. I. Curr. Org. Chem. 2011, 15, 730–752.
6. Mackman, R. L.; Lin, K. Y.; Boojamara, C. G.; Hui, H.; Douglas, J.; Grant, D.;
Petrakovsky, O.; Prasad, V.; Ray, A. S.; Cihlar, T. Bioorg. Med. Chem. Lett. 2008, 18,
1116–1119.
7. (a) Li, C.; Prichard, M. N.; Korba, B. E.; Zemlicka, J. Bioorg. Med. Chem. 2008, 16,
2148–2155; (b) Tran, J. A.; Jiang, W.; Tucci, F. C.; Fleck, B. A.; Wen, J.; Sai, Y.;
Madan, A.; Chen, T. K.; Markison, S.; Foster, A. C.; Hoare, S. R.; Marks, D.;
Harman, J.; Chen, C. W.; Arellano, M.; Marinkovic, D.; Bozigian, H.; Saunders, J.;
Chen, C. J. Med. Chem. 2007, 50, 6356–6366.
8. (a) Ren, Q.; Cui, Z.; He, H.; Gu, Y. J. Fluorine Chem. 2007, 128, 1369–1375; (b)
Dong, C.; Huang, F.; Deng, H.; Schaffrath, C.; Spencer, J. B.; O’Hagan, D.;
Naismith, J. H. Nature 2004, 427, 561–565.
9. (a) Padwa, A. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; John Wiley
& Sons: New York, 1984; Vol. 2, pp 277–406; (b) Houk, K. N.; Yamaguchi, K. In
Theory of 1,3-Dipolar Cycloadditions in 1,3-Dipolar Cycloaddition Chemistry;
Padwa, A., Ed.; John Wiley and Sons: New York, 1984; Vol. 2, pp 407–450.
10. Klamann, D.; Hagen, H. In Organische Stickstoff-Verbindungen mit einer C, N-
Doppelbindung; Claus, P. C., Ed.; Houben-Weyl: Thieme, Stuttgart, New York,
1991; Vol. E14b, pp 1–160. Chapter Teil 1: Stickstoff-Ylide.