The Journal of Organic Chemistry
Article
3-Methyl-3-p-chlorophenyl-2H-benzo[1,4]oxazin-4-oxyl (2c): red-
dish oil; yield 50%; IR (neat, cm−1) ν max = 1586, 1484, 1224, 1037;
HRMS calcd for C15H14ClNO2 [M + H]+ 275.0713, found
275.0705.
REFERENCES
■
(1) (a) Mottley, C.; Mason, R. P. In Biological Magnetic Resonance 8;
Berliner, L. J., Reuben, J., Eds.; Plenum Publishers: New York, 1989; p
489. (b) Engstrom, M.; Vaara, J.; Schimmelpfennig, B.; Ågren, H. J.
̈
3-Ethyl-3-p-chlorophenyl-2H-benzo[1,4]oxazin-4-oxyl (2d): red
oil; yield 60%; IR (neat, cm−1) νmax = 1586, 1482, 1223; HRMS
calcd for C16H16ClNO2 [M + H]+ 289.0870, found 289.0869.
3-Benzyl-3-p-methoxyphenyl-2H-benzo[1,4]oxazin-4-oxyl (3b): orange
oil; yield 60%; IR (neat, cm−1) νmax = 1586, 1483, 1255, 1186, 1041;
HRMS calcd for C22H21NO3 [M + H]+ 347.1521, found 347.1515.
General Procedure for the Thermal Decomposition of
Benzoxazine Nitroxides. A tert-butylbenzene solution of the
nitroxide (2 × 10−5 M) was thoroughly degassed with argon for 10
min and put into the EPR cavity at a given temperature, and the time-
course of EPR spectra was monitored for 1 h, obtaining a set of 30
spectra. EPR spectrometer settings: microwave power 5 mW,
modulation amplitude 1 G, field width 40 G, receiver gain 5 × 104.
Rate constants were evaluated as averaged values from three to four
independent runs at each temperature.
Phys. Chem. B 2002, 106 (47), 12354. (c) Ranby, B.; Rabek, J. F. In
ESR Spectroscopy in Polymer Research; Springer Verlag: Berlin, 1971.
(2) (a) Berliner, L. J., Ed. Molecular Biology Series: Spin Labeling,
Theory and Applications; Academic Press: New York, 1979; Vol. 2.
(b) Haering, G.; Luisi, P. L.; Hauser, H. J. Phys. Chem. 1988, 92, 3574.
(c) Subezynski, W. K.; Antholine, W. E.; Hyde, J. S.; Kusumi, A.
Biochemistry 1990, 29, 736. (d) Marsh, D.; Watts, A.; Knowles, P. F.
Biochemistry 1976, 15, 3570. (e) Berliner, L. J., Ed. Biological Magnetic
Resonance, Spin Labeling the Next Millenium; Plenum Press: New York,
1998; Vol. 14. (f) Strube, T.; Schiemann, O.; MacMillan, F.; Prisner,
T. F.; Engels, J. W. Nucleoside Nucleotide Nucl. Acids 2001, 20, 1271.
(g) Edwards, T. E.; Okonogi, T. M.; Robinson, B. H.; Sigurdsson, S. T.
J. Am. Chem. Soc. 2001, 123, 1527. (h) Verma, S.; Eckstein, F. Annu.
Rev. Biochem. 1998, 67, 99.
Computational Details. Density functional theory12 calculations
were carried out using the GAUSSIAN 09 suite of programs31 on an
IBM SP-6 at the Cineca Supercomputing Center.32 All aminoxyl
geometries were optimized at the B3-LYP/6-31G(d) level of theory
and were carried out with the unrestricted formalism, giving <S2> =
0.7501 ± 0.0003 for spin contamination (after annihilation).
Aminoxyls conformations were systematically screened by means of
appropriate relaxed (i.e., with optimization at each point) potential
energy surface scans to ensure that species were global minimum
energy structures. In addition, in frequency calculations, imaginary
(negative) values were never found, confirming that the computed
geometries were always referred to a minimum. EPR parameters
calculations were performed following the multistep procedure
previously described.10 Thermodynamic quantities were computed at
298 K by means of frequency calculations performed employing the
M06-2X23 functional in conjunction with the 6-31+G(d,p) basis set.
Transition-state optimizations were performed employing the
MPW1K functional24 in conjunction with the 6-31+G(d,p) basis set
for both optimizations and frequency calculations; in these last runs, all
optimized stationary points were found to have the appropriate
number of imaginary frequencies, and the imaginary modes (negative
sign) corresponded to the correct reaction coordinates, also confirmed
by their visualization with appropriate programs (animations files
available as Supporting Information).
(3) Brash, R. C.; London, D. A.; Wesbey, G. E.; Tozer, T. N.;
Nirecki, D. E.; Williams, R. D.; Doemeny, J.; Tuck, L. D.; Lallemand,
D. P. Radiology 1983, 147, 773.
(4) Caneschi, A.; Gatteschi, D.; Rey, P. Prog. Inorg. Chem. 1991, 39,
331.
(5) (a) Klemchuk, P. P.; Gande, M. E. Polym. Degrad. Stab. 1988, 22,
241 and references cited therein. (b) Kocherginsky, N.; Swartz, H. M.
In Nitroxide Spin Labels, Reactions in Biology and Chemistry; CRC
Press: Boca Raton, 1995. (c) Stipa, P.; Astolfi, P.; Carloni, P.; Damiani,
E.; Greci, L. In Oxidants in Biology: A Question of Balance; Valacchi, G.,
Davis, P., Eds.; Springer: Berlin, 2008; p 251.
(6) (a) Greci, L.; Damiani, E.; Carloni, P.; Stipa, P. In Free Radicals in
Biology and Environment; Minisci, F., Ed.; Kluwer Academic Publishers:
The Netherlands, 1997; p 223. (b) Samuni, A.; Krishna, M. C. In
Handbook of Synthetic Antioxidants; Packer, L., Cadenas, E., Eds.;
Marcel Dekker Inc.: New York, 1997; p 351. (c) Krishna, M. C.;
Samuni, A. Methods Enzymol. 1994, 234, 580.
(7) (a) Howard, J. A.; Tait, J. C. J. Org. Chem. 1978, 43, 4279.
(b) Grattan, D. W.; Carlsson, D. J.; Howard, J. A.; Wiles, D. M. Can. J.
Chem. 1979, 57, 2834. (c) Chateauneuf, J.; Lusztyk, J.; Ingold, K. U. J.
Org. Chem. 1988, 53, 1629. (d) Beckwith, A. L. J.; Bowry, V. W. J. Org.
Chem. 1988, 53, 1632. (e) Khote, T.; Marque, S.; Martschke, R.;
Popov, M.; Fisher, H. J. Chem. Soc., Perkin Trans. 2 1998, 1553.
(f) Stipa, P.; Greci, L.; Carloni, P.; Damiani, E. Polym. Degrad. Stab.
1997, 55, 323.
(8) (a) Barton, D. H. R.; Le Gloahec, V. N.; Smith, J. Tetrahedron
1998, 39, 7483. (b) Stipa, P. J. Chem. Soc., Perkin Trans. 2 2001, 1793.
(9) (a) Howard, J. A. Adv. Free Radical Chem. 1971, 4, 161.
(b) Khloplyankina, M. A.; Buchachenko, A. L.; Neiman, M. B.;
Vasileva, A. G. Kinetika Kataliz. 1965, 6, 465. (c) Brownlie, I. T.;
Ingold, K. U. Can. J. Chem. 1967, 45, 2427. (d) Pedersen, J. A; Torssel,
K. Acta Chem. Scand. 1971, 25, 3151.
ASSOCIATED CONTENT
■
S
* Supporting Information
Experimental and simulated EPR spectra and optimized
geometries in Cartesian coordinates of all aminoxyls; Arrhenius
plots for thermal fragmentations of derivatives 1−3b and 1e;
optimized geometries of all fragmentation reactions Transition
structures in Cartesian coordinates and animations of the
corresponding imaginary frequencies as separate (.zip) files.
This material is available free of charge via the Internet at
(10) Stipa, P. Chem. Phys. 2006, 323, 501.
(11) (a) Berti, C.; Colonna, M.; Greci, L.; Marchetti, L. Tetrahedron
1977, 33, 2321. (b) Berti, C.; Colonna, M.; Greci, L.; Marchetti, L.
Tetrahedron 1977, 33, 3149. (c) Greci, L. Tetrahedron 1982, 38, 2435.
(d) Cardellini, L.; Carloni, P.; Greci, L.; Stipa, P.; Faucitano, A. Gazz.
Chim. Ital. 1989, 119, 621. (e) Damiani, E.; Carloni, P.; Stipa, P.;
Greci, L. Free Rad. Res. 1999, 31, 113. (f) Carloni, P.; Damiani, E.;
Scattolini, M.; Stipa, P.; Greci, L. J. Chem. Soc., Perkin Trans. 2 2000,
447.
(12) (a) Parr, R. G.; Yang, W. In Density Functional Theory of Atoms
and Molecules; Oxford University Press: New York, 1998. (b) Koch,
W.; Holthausen, M. C. In A Chemists Guide to Density Functional
Theory; Wiley-VCH: Weinheim, 2000.
(13) (a) Cimino, P.; Pedone, A.; Stendardo, E.; Menziani, M. C.;
Crescenzi, O.; Barone, V. Phys. Chem. Chem. Phys. 2010, 12, 11697.
(b) Improta, R.; Barone, V. Chem. Rev. 2004, 104, 1231. (c) Barone, V.
In Recent Advances in Density Functional Methods; Chong, D. P., Ed.;
World Scientific: Singapore, 1995; p 287. (d) Adamo, C.; Barone, V.;
Fortunelli, A. J. Chem. Phys. 1995, 102, 384. (e) Adamo, C.; Barone, V.
AUTHOR INFORMATION
■
Corresponding Author
*Fax: +39 071 2204714; Tel: +39 071 2204409 E-mail: p.stipa@
ACKNOWLEDGMENTS
■
MIUR (Ministero dell’Universita
̀
e della Ricerca Scientifica e
Tecnologica) is kindly acknowledged for financial support
(PRIN 2008) and Cineca Supercomputing Center for
computational resource allocation (ISCRA grant NMPALKOX,
code: HP10CLBN2R).
9259
dx.doi.org/10.1021/jo2014559|J. Org. Chem. 2011, 76, 9253−9260