Dynamic Double Kinetic Resolution of Amines and Alcohols
= 12 Hz, 2 H), 6.80–6.78 (dd, J = 8 Hz, 2 H), 5.78–5.77 (m, 1 H),
3.70 (s, 3 H), 2.25–2.22 (m, 2 H), 1.44–1.42 (d, J = 8 Hz, 3 H), [1] a) T. C. Nugent, D. E. Negru, M. EI-Shazly, D. Hu, A. Sadiq,
1.05–1.01 (t, J = 16 Hz, 3 H) ppm. 13C NMR (400 MHz, CDCl3):
δ = 173.7, 159.2, 133.9, 127.5, 113.8, 71.7, 55.2, 27.9, 22.0, 9.0 ppm.
A. Bibi, M. N. Umar, Adv. Synth. Catal. 2011, 353, 2085–2092;
b) T. C. Nugent, M. EI-Shazly, Adv. Synth. Catal. 2010, 352,
753–819.
[2] a) M. Hoehn, U. T. Bornscheuer, ChemCatChem 2009, 1, 42–
51; b) A. O. Magnusson, M. Takwa, A. Hamberg, K. Hult,
Angew. Chem. 2005, 117, 4658; Angew. Chem. Int. Ed. 2005,
44, 4582–4585; c) Y. Sato, Y. Kayaki, T. Ikariya, Chem. Com-
mun. 2012, 48, 3635–3637; d) B. Chen, H. F. Yin, Z. S. Wang,
J. Y. Liu, J. H. Xu, Chem. Commun. 2010, 46, 2754–2756; e)
G. L. Cheng, B. Xia, Q. Wu, X. F. Lin, RSC Adv. 2013, 3,
9820–9828; f) P. Hoyos, V. Pace, A. R. Alcántara, Adv. Synth.
Catal. 2012, 354, 2585–2611; g) A. Bartoszewicz, N. Ahlsten,
B. M. Matute, Chem. Eur. J. 2013, 19, 7274–7302; h) Q. Wu, P.
Soni, M. T. Reetz, J. Am. Chem. Soc. 2013, 135, 1872–1881.
[3] M. T. Reetz, K. Schimossek, Chimia 1996, 50, 668–669.
[4] P. M. Dinh, J. A. Howarth, A. R. Hudnott, J. M. J. Williams,
W. Harris, Tetrahedron Lett. 1996, 37, 7623–7626.
[5] a) J. Paetzold, J. E. Bäckvall, J. Am. Chem. Soc. 2005, 127,
17620–17621; b) O. Pàmies, J. E. Bäckvall, Chem. Rev. 2003,
103, 3247–3261; c) K. Engström, M. Vallin, P. O. Syrén, K.
Hult, J. E. Bäckvall, Org. Biomol. Chem. 2011, 9, 81–82.
[6] a) S. B. Ko, B. Baburaj, M. J. Kim, J. Park, J. Org. Chem. 2007,
72, 6860–6864; b) Y. Kim, J. Park, M. J. Kim, ChemCatChem
2011, 3, 271–277; c) Y. Kim, J. Park, M. J. Kim, Tetrahedron
Lett. 2010, 51, 5581–5584.
[7] a) A. Parvulescu, D. D. Vos, P. Jacobs, Chem. Commun. 2005,
3, 5307–5309; b) A. N. Parvulescu, P. A. Jacobs, D. E. De Vos,
Adv. Synth. Catal. 2008, 350, 113–121; c) F. Poulhes, N. Van-
thuyne, M. P. Bertrand, S. Gastaldi, G. Gil, J. Org. Chem. 2011,
76, 7281–7286; d) L. E. Blidi, N. Vanthuyne, D. Siri, S. Gas-
taldi, M. P. Bertrand, G. Gil, Org. Biomol. Chem. 2010, 8,
4165–4168; e) A. Parvulescu, J. Janssens, J. Vanderleyden, D. E.
De Vos, Top. Catal. 2010, 53, 931–941; f) V. Gotor-Fernandez,
V. Gotor, Curr. Opin. Drug Discov. Devel. 2009, 12, 784–797.
[8] a) E. Garcia-Urdiales, F. Rebolledo, V. Gotor, Tetrahedron:
Asymmetry 2000, 11, 1459–1463; b) V. M. Sánchez, F. Rebol-
ledo, V. Gotor, J. Org. Chem. 1999, 64, 1464–1470.
1-(4-Bromophenyl)ethyl Propionate (2g): The product was isolated
by column chromatography (petroleum ether ether/EtOAc, 5:1) to
1
give 2g in 90% yield. H NMR (400 MHz, CDCl3): δ = 7.39–7.37
(d, J = 8 Hz, 2 H), 7.15–7.13 (d, J = 8 Hz, 2 H), 5.76–5.74 (m, 1
H), 2.29–2.25 (m, 2 H), 1.43–1.41 (d, J = 8 Hz, 3 H), 1.07–1.03 (t,
J = 16 Hz, 3 H) ppm. 13C NMR (400 MHz, CDCl3): δ = 173.6,
140.9, 131.6, 127.8, 131.6, 71.4, 27.8, 22.1, 9.0 ppm.
Octan-2-yl Propionate (2h): The product was isolated by column
chromatography (petroleum ether/EtOAc, 5:1) to give 2h in 85%
1
yield. H NMR (400 MHz, CDCl3): δ = 4.92–4.89 (m, 1 H), 2.31–
2.26 (m, 2 H), 1.27–1.11 (m, 16 H), 0.88–0.87 (m, 3 H) ppm. 13C
NMR (400 MHz, CDCl3): δ = 174.1, 70.7, 35.9, 31.7, 29.0, 27.9,
25.3, 22.5, 19.9, 13.9, 9.1 ppm.
N-(Heptan-2-yl)propionamide (3a): The product was isolated by col-
umn chromatography (petroleum ether/EtOAc, 2:1) to give 3a in
74% yield. 1H NMR (400 MHz, CDCl3): δ = 5.18 (br. s, 1 H),
3.94–3.87 (m, 1 H), 2.14–2.08 (q, J = 24 Hz, 2 H), 1.34–1.31 (m, 2
H), 1.23–1.20 (m, 5 H), 1.11–1.04 (m, 7 H), 0.82–0.79 (m, 3
H) ppm. 13C NMR (400 MHz, CDCl3): δ = 173.1, 45.1, 36.9, 31.6,
29.9, 25.6, 22.5, 21.0, 14.0, 10.0 ppm.
N-(1-Phenylethyl)propionamide (3b): The product was isolated by
column chromatography (petroleum ether/EtOAc, 2:1) to give 3b
in 78% yield. 1H NMR (400 MHz, CDCl3): δ = 7.27–7.19 (m, 5
H), 5.08–5.05 (m, 1 H), 2.15–2.13 (m, 2 H), 1.42–1.41 (d, J = 4 Hz,
3 H), 1.10–1.06 (t, J = 16 Hz, 3 H) ppm. 13C NMR (400 MHz,
CDCl3): δ = 172.8, 143.3, 128.6, 127.3, 126.1, 48.6, 29.8, 21.7,
9.8 ppm.
N-(Octan-2-yl)propionamide (3c): The product was isolated by col-
umn chromatography (petroleum ether/EtOAc, 2:1) to give 3c in
82% yield. 1H NMR (400 MHz, CDCl3): δ = 5.91–5.71 (br. s, 1
H), 4.09–3.93 (m, 1 H), 2.23–2.15 (m, 2 H), 1.47–1.08 (m, 16 H),
[9] N. Öhrner, C. Orrenius, A. Mattson, T. Norin, K. Hult, En-
zyme Microb. Technol. 1996, 19, 328–331.
[10] G. L. Lin, S. H. Liu, S. J. Chen, F. C. Wu, H. L. Sun, Tetrahe-
dron Lett. 1993, 34, 6057–6058.
0.88–0.85 (m, 3 H) ppm. 13C NMR (400 MHz, CDCl3): δ = 173.1, [11] a) S. I. Murahashi, N. Yoshimura, T. Tsumiyama, T. Kojima,
J. Am. Chem. Soc. 1983, 105, 5002–5011; b) K. Engström, M.
Shakeri, J. E. Bäckvall, Eur. J. Org. Chem. 2011, 1827–1830; c)
Y. K. Choi, Y. Kim, K. Han, J. Park, M. J. Kim, J. Org. Chem.
2009, 74, 9543–9545; d) G. Xu, X. T. Dai, S. M. Fu, J. P. Wu,
L. R. Yang, Tetrahedron Lett. 2014, 55, 397–402; e) B. G. Vaz,
C. D. F. Milagre, M. N. Eberlin, H. M. S. Milagre, Org. Biomol.
Chem. 2013, 11, 6695–6698; f) A. J. Blacker, M. J. Stirling,
M. I. Page, Org. Process Res. Dev. 2007, 11, 642–648; g) J. De-
ska, C. D. P. Ochoa, J. E. Bäckvall, Eur. J. Org. Chem. 2010,
999–1015.
45.1, 36.9, 31.6, 29.9, 25.6, 22.5, 21.0, 14.0, 10.0 ppm.
Amide of Mexiletine 3d: The product was isolated by column
chromatography (petroleum ether/EtOAc, 2:1) to give 3d in 89%
1
yield. H NMR (400 MHz, CDCl3): δ = 7.01–6.90 (m, 3 H), 6.02
(br. s, 1 H), 4.37 (br. s, 1 H), 3.79–3.71 (m, 2 H), 2.41–2.05 (m, 8
H), 1.41–1.40 (d, J = 4 Hz, 3 H), 1.20 (s, 3 H) ppm. 13C NMR
(400 MHz, CDCl3): δ = 173.2, 154.8, 130.7, 129.0, 124.1, 73.9, 45.3,
29.9, 17.8, 16.1, 9.9 ppm.
[12] P. Mäki-Arvela, S. Sahin, K. Eränen, D. Y. Murzin, Res. Chem.
Intermed. 2010, 36, 245–252.
[13] a) J. Turgeon, A. C. G. Uprichard, P. M. Belanger, D. W. G.
Harron, O. Grech-Belanger, J. Pharm. Pharmacol. 1991, 43,
630–635; b) R. J. Hill, H. J. Duff, R. S. Sheldon, Mol. Pharma-
col. 1988, 34, 659–663.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, GC and HPLC data of DDKR process
of alcohols, amines, and mexiletine as well as NMR spectra.
[14] Y. Wang, S. J. Gao, W. H. Ye, H. S. Yoon, Y. Y. Yang, Nat.
Mater. 2006, 5, 791–796.
Acknowledgments
[15] X. Q. Qian, Z. Y. Jiang, Q. Wu, X. F. Lin, J. Polym. Sci., Part
A: Polym. Chem. 2013, 51, 2049–2057.
The financial support from the National Natural Science Founda-
tion of China (NSFC) (grant numbers 21072172 and 21272208) is
gratefully acknowledged.
Received: January 10, 2014
Published Online: March 18, 2014
Eur. J. Org. Chem. 2014, 2917–2923
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
2923