Spanish Ministry of Science and Innovation for the predoctoral
grant provided.
Notes and references
1 Y. Venkateswarlu, D. J. Faulkner, J. L. R. Steiner, E. Corcoran
and J. Clardy, J. Org. Chem., 1991, 56, 6271.
2 V. J. R. V. Mukku, R. A. Edrada, F. J. Schmitz, M. K. Shanks,
B. Chandhuri and D. Fabbro, J. Nat. Prod., 2003, 66, 686.
3 (a) J. Kobayashi, M. Suzuki and M. Tsuda, Tetrahedron, 1997,
53, 15681; (b) N. D. Sung, M. R. Kim, J. H. Ha, B. M. Kwon,
H. W. Chung, B. T. Ahn and S. Y. Ryu, Han’guk Nonghwa Hakhoechi,
2000, 43, 174.
4 (a) K. Kono, M. Tanaka, T. Ogita, T. Hosoya and T. Kohama,
J. Antibiot., 2000, 53, 459; (b) K. Kono, M. Sugiura and T. Kohama,
J. Antibiot., 2002, 55, 99; (c) N. Maezawa, N. Furnichi,
H. Tsuchikawa and S. Katsumura, Tetrahedron Lett., 2007,
48, 4865.
5 For some reviews, including the isolation and biological activity of
this type of compound, see: (a) D. J. Faulkner, Nat. Prod. Rep.,
1996, 13, 75; (b) D. Sipkema, M. C. R. Fraussen, R. Osinga,
J. Tramper and R. H. Wijffels, Mar. Biotechnol., 2005, 7, 142;
(c) H. Gross and G. M. Konig, Phytochem. Rev., 2006, 5, 115.
6 (a) E. Goclick, G. M. Koenig, A. D. Wright and R. Kamisnky,
J. Nat. Prod., 2000, 63, 1150; (b) J. H. Kwak, F. J. Schmitz and
M. Kelly, J. Nat. Prod., 2000, 63, 1153.
Scheme 5 Synthesis of akaol A (3).
for 3 h underwent simultaneous ketone deprotection and intra-
molecular aldol condensation, affording the tricyclic a,b-enone 20.
Treatment of this with TfOTMS and Pri2NEt gave silyl dienol
ether 9, which after refluxing with methyl propiolate in xylene
and further oxidation with DDQ in dioxane under reflux
afforded the tetracyclic compound 21 together with the phenol 8.
The silyl ether 21 was transformed into hydroxy ester 8 after
treatment with 1 M HCl in MeOH.
7 V. Rojas de la Parra, V. Mierau, T. Anke and O. Sterner,
Tetrahedron, 2006, 62, 1828.
Finally, functionalization of the aromatic D ring was
tackled. Scheme 5 shows the transformation of compound 8
into akaol A (3). First, the elaboration of the catechol unit was
attempted; the treatment of compound 8 with Fremy’s salt
or benzeneseleninic anhydride gave the unaltered starting
material. This result can be attributed to the deactivation of
the aromatic ring by the ester group. In order to avoid this
inconvenience, the latter was reduced to the hydroxymethyl
group. The phenol 25, resulting from the deprotection of
benzyl ether 24, was then easily converted into o-quinone 26,
which was finally transformed into akaol A (3) by reaction
with Raney nickel. The optical rotation of synthetic akaol A
(3) ([a]D25: ꢀ13.7; c 8.0, MeOH) was similar to that reported
for the natural product ([a]D25: ꢀ12; c 0.15, MeOH); the
spectroscopic properties were identical to those previously
described.2
8 J. C. Liermann, H. Kolshorn, H. Auke, E. Thines and T. Opatz,
J. Nat. Prod., 2008, 71, 1654.
9 J. Kalesnikoff, L. M. Sly, M. R. Hughes, T. Buchse, M. J. Rauh,
L.-P. Cao, V. Lam, A. Mui, M. Huber and G. Krystal, Rev.
Physiol., Biochem., Pharmacol., 2003, 149, 87.
10 For recent examples of synthesis of drimenyl phenols and puupe-
henones, see: (a) S. Quideau, M. Lebon and A.-M. Lamidey,
Org. Lett., 2002, 22, 3975; (b) H. Ishibashi, K. Ishihara and
H. Yamamoto, J. Am. Chem. Soc., 2004, 126, 11122; (c) E. J.
Alvarez-Manzaneda, R. Chahboun, I. Barranco Perez, E. Cabrera,
´
E. Alvarez and R. Alvarez-Manzaneda, Org. Lett., 2005, 7, 1477;
(d) E. J. Alvarez-Manzaneda, R. Chahboun, E. Cabrera, E. Alvarez,
A. Haidour, J. M. Ramos, R. Alvarez-Manzaneda, M. Hmamouchi
and H. Bouanou, J. Org. Chem., 2007, 72, 3332.
11 L. Yang, D. E. Williams, A. Mui, C. Ong, G. Krystal, R. van Soest
and R. Andersen, J. Org. Lett., 2005, 7, 1073.
12 We also encountered some difficulties in the construction of the
cyclopentane B ring of taiwaniaquinoids via an intramolecular
Friedel–Crafts alkylation; this goal could only be achieved through
a very reactive intermediate aryl allyl cation. See: E. Alvarez-
Manzaneda, R. Chahboun, E. Cabrera, E. Alvarez, R. Alvarez-
In summary, the first synthesis of (ꢀ)-akaol A (3) has been
achieved starting from (ꢀ)-sclareol (12). The synthetic sequence
includes a new oxidative degradation of the latter, induced by
the ozone–lead(IV) acetate system, which affords ketoester 14 in
high yield. The suitable configuration on C-8 was attained after
the diastereoselective a-methylation of aldehyde 17. The cyclo-
pentane C ring of the target compound was obtained after
intramolecular aldol condensation and the aromatic D ring was
constructed through a Diels–Alder cycloaddition involving silyl
dienol ether 9.
Manzaneda, R. Meneses, H. Es-Samti and A. Ferna
Chem., 2009, 74, 3384.
´
ndez, J. Org.
13 For examples of syntheses of natural products and related com-
pounds from ketone 13, see: (a) M. C. Costa, R. Tavares, W. B.
Motherwell and M. J. C. Curto, Tetrahedron Lett., 1994, 35, 8839;
(b) B. Waegell, Pure Appl. Chem., 1997, 69, 627; (c) H. Toshima,
H. Oikawa, T. Toyomasu and T. Sassa, Tetrahedron, 2000,
56, 8443; (d) J. Villamizar, J. Fuentes, F. Salazar, E. Tropper
and R. Alonso, J. Nat. Prod., 2003, 66, 1623; (e) J. S. Yadav,
G. Baishya and U. Dash, Tetrahedron, 2007, 63, 9896;
(f) P. Basabe, O. Bodero, I. S. Marcos, D. Diez, M. de Roma
A. Blanco and J. G. Urones, Tetrahedron, 2007, 63, 11838.
14 J. M. Castro, S. Salido, J. Altarejos, M. Nogueras and A. Sa
Tetrahedron, 2002, 58, 5941.
´
n,
´
nchez,
The authors thank the Spanish Ministry of Science and
Innovation (Project CTQ2009-09932) and the Regional Govern-
ment of Andalusia (Project P07-FQM-03101 and assistance to
the FQM-348 group) for financial support. A. F. thanks the
15 E. J. Alvarez-Manzaneda, R. Chahboun, M. J. Cano, E. Cabrera
Torres, E. Alvarez, R. Alvarez-Manzaneda, A. Haidour and
J. M. Ramos Lopez, Tetrahedron Lett., 2006, 42, 6619.
´
c
608 Chem. Commun., 2012, 48, 606–608
This journal is The Royal Society of Chemistry 2012