Journal of the American Chemical Society
COMMUNICATION
Scheme 2
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
Support for this research by a Liebig-Stipendium of the Fonds
der Chemischen Industrie for C.K. is gratefully acknowledged.
Initial work conducted at Durham University was supported by a
DFG Fellowship to C.K. T.B.M. thanks the Royal Society for a
Wolfson Research Merit Award, the Alexander von Humboldt
Foundation for a Research Award, and EPSRC for an Overseas
Research Travel Grant. Z.L. thanks the Research Grants Council
of Hong Kong for support (HKUST 603711).
Scheme 3. Proposed Catalytic Cycle for the Cu-Catalyzed
Reduction of CO2 to CO with 2
’ REFERENCES
(1) (a) Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010,
132, 2898–2900. (b) Vyas, D. J.; Oestreich, M. Angew. Chem., Int. Ed.
2010, 47, 8513–8515. (c) Vyas, D. J.; Fr€ohlich, R.; Oestreich, M. Org.
Lett. 2011, 13, 2094–2097. (d) Welle, A; Petrignet, J.; Tinant, B.;
Wouters, J.; Riant, O. Chem.—Eur. J. 2010, 16, 10980–10983. (e) Ibrahem,
I.; Santoro, S.; Himo, F.; Cꢀordova, A. Adv. Synth. Catal. 2011, 353,
245–252. (f) Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. J. Org. Chem.
2010, 75, 4841–4847. (g) Wang, P.; Yeo, X.-L.; Loh, T. P. J. Am. Chem. Soc.
2011, 133, 1254–1256.
(2) Kleeberg, C.; Feldmann, E.; Hartmann, E.; Vyas, D. J.; Oestreich,
M. Chem.ÀEur. J., 2011, DOI: 10.1002/chem.201102367.
(3) (a) Laitar, D. S.; M€uller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005,
127, 17196–17197. (b) Bhattacharyya, K. X.; Akana, J. A.; Laitar, D. S.;
Berlin, J. M.; Sadighi, J. P. Organometallics 2008, 27, 2682–2684.
(c) Mankad, N. P.; Gray, T. G.; Laitar, D. S.; Sadighi, J. P. Organome-
tallics 2004, 23, 1191–1193. (d) Ohishi, T; Nishiura, M.; Hou, Z. Angew.
Chem., Int. Ed. 2008, 47, 5792–5795. (e) Fortman, G. C.; Slawin,
A. M. Z.; Nolan, S. P. Organometallics 2010, 29, 3966–3972. (f) Mankad,
N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004, 23, 3369–3371.
(g) Goj, L. A.; Blue, E. D.; Munro-Leighton, C.; Gunnoe, T. B.; Petersen,
J. L. Inorg. Chem. 2005, 44, 8647–8649. (h) Zhu, J.; Lin, Z.; Marder, T. B.
Inorg. Chem. 2005, 44, 9384–9390.
The stoichiometry of the decomposition of 9 can be rationalized
by the equation given in Scheme 2. While the mechanism of this
reactions is the subject of ongoing research, it may be related to
the conversion of 4 to 5 and the well-known Brook rearrange-
ment of α-silylalcohols.12
(4) Ariafard, A.; Brookes, N. J.; Stranger, R.; Yates, B. F. Organome-
tallics 2011, 30, 1340–1349.
It appears that the higher stability of the silanecarboxylic acid
complex 4 compared to the related species in the Cu boryl system
and its ability to undergo transmetalation with 2 forming 9 are
crucial for the distinct reactivity observed here.3a,b,5 Plausible
pathways relevant to the Cu-catalyzed reduction of CO2 to CO
with 2 are shown in Scheme 3.
In conclusion, the stoichiometric reduction of CO2 to CO
occurs via a two-step process. The insertion of CO2 into a CuÀSi
bond of complex 3 leads to formation of the isolable silanecar-
boxylato complex 4, which slowly forms the silanolate complex 5,
releasing CO. However, in situ NMR spectroscopy during
catalysis suggests a more complicated mechanism than postu-
lated on the basis of the stoichiometric reactions, involving at
least the reaction of 4 with 2, forming 9 and, presumably, 3.
Detailed mechanistic and DFT studies are ongoing.
(5) Zhao, H.; Lin, Z.; Marder, T. B. J. Am. Chem. Soc. 2006, 128,
15637–15643.
(6) Data taken from CRC Handbook of Chemistry and Physics, 57th
ed.; Weast, R. C., Ed.; CRC Press, Inc.: Cleveland, OH, 1976À1977.
(7) Dang, L.; Lin, Z.; Marder, T. B. Organometallics 2010, 29,
917–927.
(8) See SI for details.
(9) (a) Dang, L.; Lin, Z.; Marder, T. B. Organometallics 2008,
27, 4443–4454. (b) O’Brien, J. M.; Hoveyda, A. H. J. Am. Chem. Soc.
2011, 133, 7712–7715.
(10) Dang, L.; Lin, Z.; Marder, T. B. Chem. Commun. 2009,
3987–3995.
(11) It was also verified that no reaction occurs between 2 and CO2
in the absence of the copper complex as well as in the presence of CuCl
under otherwise identical conditions. See SI for details.
(12) The implied instability of 9 is also in agreement with the
observation that the reaction of pinBH with Me2PhSiCO2H leads to 7
and not 9. While the related reactions of pinBH with Me2PhSiOH and of
Me2PhSiCl with Me2PhSiCO2H lead to 6 and 7, respectively. See SI for
details. For the stability of silanecarboxylic acid derivatives and related
compounds, see: (a) Igawa, K.; Kokan, N.; Tomooka, K. Angew. Chem.,
Int. Ed. 2010, 49, 728–731. (b) Brook, A. G. J. Am. Chem. Soc. 1955,
77, 4827–4829. (c) Brook, A. G. Acc. Chem. Res. 1974, 7, 77–84.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures, ana-
b
lytical and crystallographic data, NMR spectra, and details of
DFT calculations. This material is available free of charge via the
19063
dx.doi.org/10.1021/ja208969d |J. Am. Chem. Soc. 2011, 133, 19060–19063