2468
C.-J. Hu et al. / Tetrahedron Letters 53 (2012) 2465–2468
than 5% yield (entry 6). The alkyl carboxylic acid, such as acetic
acid, can tolerate the reaction well (entry 7).
Supplementary data
Subsequently, promoted by the successful palladium-catalyzed
direct C–H bond oxidative acyloxylation of 2-phenylpyridine, we
explored the reaction of several 2-arylpyridines with aromatic
acids and the results were shown in Table 3.
Supplementary data associated with this article can be found, in
Initially, the substrate of 2-(4-methylphenyl)pyridine was trea-
ted with different aromatic acids, giving similar results with 2-
phenylpyridine. Steric hindrance and electronic effects of the aro-
matic acids both affected the reaction. For example, 2b gave a low-
er yield of 55% than 2c and d (entries 2–4). The electron-donating
group, such as methyl group, was also beneficial for the transfor-
mation, but the electron-withdrawing group, like chloro, bromo,
fluoro, and nitro, decreased the efficiency (entries 5–8). Moreover,
the yield of 3ba was nearly the same with 3aa, indicating that the
methyl group of the aryl ring had little influence on the reaction
(entry 1). Next, the reaction of a variety of 2-arylpyridines, such
as 2-(4-chlorophenyl)pyridine, 2-(4-fluorinphenyl)pyridine and
2-(4-methoxylphenyl)pyridine with benzoic acid were conducted
under the optimal conditions. The arenes possessing electron-
donating functional groups, like methyl and methoxyl, were found
to be more reactive and gave slightly higher yields than those of
electron-withdrawing groups, such as chloro and fluoro groups
(entries 1, 9–11).
A possible mechanism for the present palladium(II)-catalyzed
ortho-oxidative acyloxylation of 2-phenylpyridines (1a) with aro-
matic carboxylic acids is proposed in Scheme 1. First, the reaction
of Pd(OAc)2 with 2-phenylpyridine (1a) by removing HOAc affords
a cyclopalladated intermediate (A), which was actually confirmed
by many related reports16 and was also detected by HRMS in our
lab. This intermediate reacted with the in-situ generated silver car-
boxylate from the reaction of carboxylic acid with Ag2CO3 to give
the ligand exchanged product (B), in which occurs the reductive
elimination to release the acyloxylated product. The resulting Pd0
intermediate is then reoxidized by Ag(I) and Cu(I) salts to regener-
ate the Pd(II) catalyst.10,17
References and notes
1. For selected reports on the construction of C–C via direct functionalization of
C–H, see: (a) Komai, H.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2011, 13,
1706; (b) Brasche, G.; Garcia-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10,
2207; (c) Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A. Org. Lett.
2004, 6, 35; (d) Sezen, B.; Sames, D. Org. Lett. 2003, 5, 3607; (e) Saha, D.; Adak,
L.; Ranu, B. C. Tetrahedron Lett. 2010, 51, 5624; (f) Tsai, A. S.; Tauchert, M. E.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2011, 133, 1248.
2. For selected reports on the construction of C–N via direct functionalization of
C–H, see: (a) Beccalli, E. M.; Broggini, G.; Fasana, A.; Rigamonti, M. J. Organomet.
Chem. 2011, 696, 277; (b) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem.
Soc. 2005, 127, 14560; (c) Guru, M. M.; Ali, M. A.; Punniyamurthy, T. Org. Lett.
2011, 13, 1194; (d) Tsang, W. C. P.; Munday, R. H.; Brasche, G.; Zheng, N.;
Buchwald, S. L. J. Org. Chem. 2008, 73, 7603; (e) Guo, S. M.; Xie, Y. J.; Xia, C. G.;
Huang, H. H. Org. Lett. 2011, 13, 522; (f) Monguchi, D.; Fujiwara, T.; Furukawa,
H.; Mori, A. Org. Lett. 2009, 11, 1607.
3. For selected reports on the construction of C–O via direct functionalization of
C–H, see: (a) Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008, 130,
7247; (b) Kalber, E. W.; Whitfield, S. R.; Sanford, M. S. J. Mol. Catal. A: Chem.
2006, 251, 108; (c) Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272.
4. For selected reports on the construction of C–S via direct functionalization of
C–H, see: (a) Inamoto, K.; Hasegawa, C.; Hiroya, K.; Doi, T. Org. Lett. 2008, 10,
5147; (b) Xu, R. S.; Wan, J. P.; Mao, H.; Pan, Y. J. J. Am. Chem. Soc. 2010, 132,
15531; (c) Fukuzawa, S.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K.
Tetrahedron Lett. 2009, 50, 2374; (d) Prasad, D. J. C.; Naidu, A. B.; Sekar, G.
Tetrahedron Lett. 2009, 50, 1411; (e) Jaseer, E. A.; Prasad, D. J. C.; Dandapat, A.;
Sekar, G. Tetrahedron Lett. 2010, 51, 5009; (f) Fang, X. L.; Tang, R. Y.; Zhong, P.;
Li, J. H. Synthesis 2009, 24, 4183; (g) Pezzella, A.; Palma, A.; Iadonisi, A.;
Napolitano, A.; d’Ischia, M. Tetrahedron Lett. 2007, 48, 3883.
5. (a) Desai, L. V.; Stowers, K. J.; Sanford, M. S. J. Am. Chem. Soc. 2008, 130, 13285;
(b) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300; (c)
Dick, A. R.; Kampf, J. W.; Sanford, M. S. Organometallics 2005, 24, 482; (d)
Stowers, K. J.; Sanford, M. S. Org. Lett. 2009, 11, 4584; (e) Dick, A. R.; Remy, M.
S.; Kampf, J. W.; Sanford, M. S. Organometallics 2007, 26, 1365; (f) Kalyani, D.;
Sanford, M. S. Org. Lett. 2005, 7, 4149.
6. Choy, P. Y.; Lau, C. P.; Kwong, F. Y. J. Org. Chem. 2011, 76, 80.
7. Mutule, I.; Suna, E.; Olofsson, K.; Pelcman, B. J. Org. Chem. 2009, 74, 7195.
8. Gu, S. J.; Chen, C.; Chen, W. Z. J. Org. Chem. 2009, 74, 7203.
In summary, we have developed a novel palladium-catalyzed
direct C–H bond oxidative acyloxylation method, which allows
the reaction between 2-arylpyridines and aromatic carboxylic
acids for the synthesis of mono-acyloxylated products in moderate
to good yields. Importantly, the reaction can be conducted without
using any ligands at lower temperature.
9. Wang, G. W.; Yuan, T. T.; Wu, X. L. J. Org. Chem. 2008, 73, 4717.
10. Liang, Z. J.; Zhao, J. L.; Zhang, Y. H. J. Org. Chem. 2010, 75, 170.
11. (a) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. J. Am. Chem. Soc.
2009, 131, 17050; (b) Powers, D. C.; Xiao, D. Y.; Geibel, M. A. L.; Ritter, T. J. Am.
Chem. Soc. 2010, 132, 14530; (c) Chen, X.; Hao, X. S.; Goodhue, C. E.; Yu, J. Q. J.
Am. Chem. Soc. 2006, 128, 6790; (d) Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu, J. Q.
Org. Lett. 2006, 8, 3387.
12. Ye, Z. S.; Wang, W. H.; Luo, F.; Zhang, S. H.; Cheng, J. Org. Lett. 2009, 11, 3974.
13. Wang, W. H.; Luo, F.; Zhang, S. H.; Cheng, J. J. Org. Chem. 2010, 75, 2415.
14. Wang, W. H.; Pan, C. D.; Chen, F.; Cheng, J. Chem. Commun. 2011, 47, 3978.
15. Sun, C. L.; Liu, J.; Wang, Y.; Zhou, X.; Li, B. J.; Shi, Z. J. Synlett 2011, 0883.
16. (a) Chen, X.; Goodhue, C. E.; Yu, J. Q. J. Am. Chem. Soc. 2006, 128, 12634; (b) Yu,
W. Y.; Sit, W. N.; Zhou, Z. Y.; Chan, A. S.-C. Org. Lett. 2009, 11, 3174; (c) Li, W.;
Yin, Z. W.; Jiang, X. Q.; Sun, P. P. J. Org. Chem. 2011, 76, 8543.
Acknowledgments
The authors thank the National Natural Science Foundation of
China (No. 20972114), the Zhejiang Provincial Natural Science
Foundation of China (Y4100578) and the Opening Foundations of
Zhejiang Provincial Top Key Discipline (100061200106 and
100061200140).
17. (a) Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett. 2011, 13, 1378;
(b) Kim, D.; Hong, S. Org. Lett. 2011, 13, 4466.