7 D. Craig and G. D. Henry, Eur. J. Org. Chem., 2006, 3558.
8 (a) D. Craig and N. K. Slavov, Chem. Commun., 2008, 6054; (b) D.
Craig and F. Grellepois, Org. Lett., 2005, 7, 463; (c) D. Craig, M. I.
Lansdell and S. E. Lewis, Tetrahedron Lett., 2007, 48, 7861.
9 D. Craig, S. J. Gore, M. I. Lansdell, S. E. Lewis, A. V. W. Mayweg and
A. J. P. White, Chem. Commun., 2010, 46, 4991.
10 (a) M. M. Abelman, R. L. Funk and J. D. Munger, J. Am. Chem. Soc.,
1982, 104, 4030; (b) R. L. Funk and J. D. Munger, J. Org. Chem., 1985,
50, 707; (c) M. M. Abelman, R. L. Funk and J. D. Munger, Tetrahedron,
1986, 42, 2831; (d) R. L. Funk, J. B. Stallman and J. A. Wos, J. Am.
Chem. Soc., 1993, 115, 8847.
11 A. G. Cameron and D. W. Knight, Tetrahedron Lett., 1985, 26, 3503.
12 R. E. Ireland, R. H. Mueller and A. K. Willard, J. Am. Chem. Soc.,
1976, 98, 2868.
13 R. K. Boeckman, Jr., N. E. Genung, K. Chen and T. R. Ryder, Org.
Lett., 2010, 12, 1628.
14 (a) R. K. Boeckman, Jr., M. D. Shair, J. R. Vargas and L. A. Stolz, J.
Org. Chem., 1993, 58, 1295; (b) R. K. Boeckman, Jr. and M. R. Reeder,
J. Org. Chem., 1997, 62, 6456; (c) R. K. Boeckman, Jr., J. Zhang and
M. R. Reeder, Org. Lett., 2002, 4, 3891.
Scheme 6 Synthesis and Ireland-Claisen rearrangement of lactone 3.
Reagents and conditions: (i) dimethyl 2-methylmalonate, NaH, DMF, 0 ◦C
→ rt, then add 6, 0 ◦C, then rt, 2 h, 63%; (ii) K2CO3, MeOH, 0 ◦C,
3 h, 100%; (iii) LiCl, H2O–DMSO, microwave, 180 ◦C, 15 min, 67%;
(iv) aq. LiOH (2 M) THF, 0 ◦C, 16 h, 95%; (v) 2,4,6-trichlorobenzoyl
chloride, Et3N, CH2Cl2, 40 ◦C, 168 h, syringe pump addition of 13, 79%;
(vi) TMSOTf, Et3N, CH2Cl2, rt, 16 h, 92%.
15 P. Razon, M.-A. N’Zoutani, S. Dhulut, S. Bezzenine-Lafolle´e, A.
Pancrazi and J. Ardisson, Synthesis, 2005, 109.
16 C. Pierry, D. Cahard, S. Couve-Bonnaire and X. Pannecoucke, Org.
Biomol. Chem., 2011, 9, 2378.
17 K. Ando, J. Org. Chem., 1998, 63, 8411.
Acknowledgements
18 HATU:
2-(7-1H-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate; L. Carpino, A. El-Faham, C. A. Mino and F.
Albericio, J. Chem. Soc., Chem. Commun., 1994, 201.
We thank EPSRC (DTA-funded studentship to to S.J.G. and
postdoctoral research associateship to K.F., and responsive-mode
grants EP/F015356 and GR/T10268), and Hoffman–La Roche
(additional studentship support to S.J.G.) for support.
19 Reagent systems which failed to effect lactonisation included
2,2¢-dipyridyldisulfide–triphenylphosphine, and 2,4,6-trichlorobenzoyl
chloride–Et3N, in both the absence and presence of DMAP.
20 For other partial and total syntheses of grandisol, see: A. Frongia, C.
Girard, J. Ollivier, P. Paolo Piras and F. Secci, Synlett, 2008, 2823 and
references therein; A. M. Bernard, A. Frongia, J. Ollivier, P. P. Piras, F.
Secci and M. Spiga, Tetrahedron, 2007, 63, 4968 and references therein.
21 Attempts to alkylate homoallylic iodide 6 directly with the enolate
formed from methyl propionate resulted in base-mediated elimination
of HI, to give the corresponding 1,3-diene. Consistently higher yields
were obtained when purified 6 was used in these alkylation reactions.
22 Best yields were obtained when carbonate methanolysis and decar-
boxylation were carried out in separate steps.
23 K. Narasaka, K. Maruyama and T. Mukaiyama, Chem. Lett., 1978,
7, 885. Use of the HATU–DIPEA reagent system gave 3, but in
significantly lower yield.
24 The use of BSA–KOAc for this transformation failed to return any
rearranged product. We attribute this to the lower acidity of lactone 14
in comparison with the a-sulfonyl congeners 1 and 2.
Notes and references
1 R. E. Ireland and R. H. Mueller, J. Am. Chem. Soc., 1972, 94, 5897; for
reviews of the Ireland–Claisen rearrangement, see: (a) S. Pereira and
M. Srebnik, Aldrichimica Acta, 1993, 26, 17; (b) Y. Chai, S. Hong, H.
A. Lindsay, C. McFarland and M. C. McIntosh, Tetrahedron, 2002, 58,
2905.
2 For a review of the Claisen and related rearrangements, see: A. M.
Castro, Chem. Rev., 2004, 104, 2939.
3 For a review of catalysis of the Claisen rearrangement, see: K. C.
Majumdar, S. Alam and B. Chattopadhyay, Tetrahedron, 2008, 64, 597.
4 (a) D. Bourgeois, D. Craig, N. P. King and D. M. Mountford, Angew.
Chem., Int. Ed., 2005, 44, 618; (b) D. Bourgeois, D. Craig, F. Grellepois,
D. M. Mountford and A. J. W. Stewart, Tetrahedron, 2006, 62, 483.
5 (a) D. Craig, N. P. King, J. T. Kley and D. M. Mountford, Synthesis,
2005, 3279; (b) J. E. Camp and D. Craig, Tetrahedron Lett., 2009, 50,
3503.
25 V. Wakchaure and B. List, Angew. Chem., Int. Ed., 2010, 49, 4136.
26 For examples of the homologation–reduction sequence for the conver-
sion of acid 14 into grandisol, see: (a) R. D. Clark, Synth. Commun.,
1979, 9, 325; (b) K. Mori and K. Fukamatsu, Liebigs Ann. Chem., 1992,
489.
6 D. Craig, F. Paina and S. C. Smith, Chem. Commun., 2008,
3408.
8002 | Org. Biomol. Chem., 2011, 9, 8000–8002
This journal is
The Royal Society of Chemistry 2011
©