A.K. Mahapatra et al. / Journal of Photochemistry and Photobiology A: Chemistry 222 (2011) 47–51
51
Appendix A. Supplementary data
[25] M.H. Lee, J.-S. Wu, J.W. Lee, J.H. Jung, J.S. Kim, Highly sensitive and selective
chemosensor for Hg2+ based on the rhodamine fluorophore, Org. Lett. 9 (2007)
2501–2504.
Supplementary data associated with this article can be found, in
[26] W. Lin, X. Cao, Y. Ding, L. Yuan, L. Long,
A highly selective and sen-
sitive fluorescent probe for Hg2+ imaging in live cells based on
rhodamine–thioamide–alkyne scaffold, Chem. Commun. (2010) 3529–3531.
a
[27] X. Chen, K.-H. Baek, Y. Kim, S.-J. Kim, I. Shin, J. Yoon, A selenolactone-based flu-
orescent chemodosimeter to monitor mecury/methylmercury species in vitro
and in vivo, Tetrahedron 66 (2010) 4016–4021.
References
[1] K. Komatsu, Y. Urano, H. Kojima, T. Nagano, Development of an iminocoumarin-
based zinc sensor suitable for ratiometric fluorescence imaging of neuronal
zinc, J. Am. Chem. Soc. 129 (2007) 13447–13454.
[2] X. Peng, J. Du, J. Fan, J. Wang, Y. Wu, J. Zhao, S. Sun, T. Xu, A selective fluorescent
sensor for imaging Cd2+ in living cells, J. Am. Chem. Soc. 129 (2007) 1500–1501.
[3] Q. He, E.W. Miller, A.P. Wong, C.J. Chang, A selective fluorescent sensor for
detecting lead in living cells, J. Am. Chem. Soc. 128 (2006) 9316–9317.
[4] H.H. Harris, I. Pickering, G.N. George, The chemical form of mercury in fish,
Science 301 (2003) 1203.
[5] N. Zheng, Q.C. Wang, X.W. Zhang, D.M. Zheng, Z.S. Zhang, S.Q. Zhang, Sci. Total
Environ. 96 (2007) 387.
[6] S.V. Wegner, A. Okesli, P. Chen, C. He, Design of an emission ratiometric biosen-
sor from MerR family proteins: a sensitive and selective sensor for Hg2+, J. Am.
Chem. Soc. 129 (2007) 3474–3475.
[7] Y.K. Yang, K.J. Yook, J. Tae, A rhodamine-based fluorescent and colorimetric
chemodosimeter for the rapid detection of Hg2+ ions in aqueous media, J. Am.
Chem. Soc. 127 (2005) 16760–16761.
[8] J.V. Ros-Lis, M.D. Marcos, R. Martinez-Manez, K. Rurack, J. Soto, A regenerative
chemodosimeter based on metal-induced dye formation for the highly selec-
tive and sensitive optical determination of Hg2+ ions, Angew. Chem. Int. Ed. 44
(2005) 4405–4407.
[28] W. Jiang, W. Wang,
A selective and sensitive “turn-on” fluorescent
chemodosimeter for Hg2+ in aqueous media via Hg2+ promoted facile
desulfurization–lactonization reaction, Chem. Commun. (2009) 3913–3915.
[29] X. Chen, S.-W. Nam, M.J. Jou, Y. Kim, S.-J. Kim, S. Park, J. Yoon, Hg2+ selective
fluorescent and colorimetric sensor: its crystal structure and application to
bioimaging, Org. Lett. 10 (2008) 5235–5238.
[30] H. Sakamoto, J. Ishikawa, S. Nakao, H. Wada, Excellent mercury(II) ion selective
fluoroionophore based on a 3,6,12,15-tetrathia-9-azaheptadecane derivative
bearing a nitrobenzoxadiazolyl moiety, Chem. Commun. (2000) 2395–2396.
[31] S. Voutsadaki, G.K. Tsikalas, E. Klontzas, G.E. Froudakis, H.E. Katerinopoulos, A
“turn-on” coumarin-based fluorescent sensor with high selectivity for mercury
ions in aqueous media, Chem. Commun. (2010) 3292–3294.
[32] E.M. Nolan, S.J. Lippard,
A “turn-on” fluorescent sensor for the selective
detection of mercuric ion in aqueous media, J. Am. Chem. Soc. 125 (2003)
14270–21471.
[33] J. Wang, B. Liu, Highly sensitive and selective detection of Hg2+ in aqueous
solution with mercury-specific DNA and Sybr Green I, Chem. Commun. (2008)
4759–4761.
[34] M.-Y. Chea, A.W. Czarnik, Fluorometric chemodosimetry. Mercury(II) and sil-
ver(I) indication in water via enhanced fluorescence signaling, J. Am. Chem.
Soc. 114 (1992) 9704–9705.
[9] S. Ou, Z. Lin, C. Duan, H. Zhang, Z. Bai, A sugar-quinoline fluorescent chemosen-
sor for selective detection of Hg2+ ion in natural water, Chem. Commun. (2006)
4392–4394.
[35] G. Hennrich, H. Sonnenschein, U. Resch-Genger, Redox switchable fluorescent
probe selective for either Hg(II) or Cd(II) and Zn(II), J. Am. Chem. Soc. 121 (1999)
5073–5074.
[10] D.S. McClure, Spin orbit interaction in aromatic molecules, J. Chem. Phys. 20
(1952) 682–686.
[11] A.W. Varnes, R.B. Dodson, E.L. Wehry, Interactions of transition-metal ions with
photoexcited states of flavines. Fluorescence quenching studies, J. Am. Chem.
Soc. 94 (1972) 946–950.
[12] K. Rurack, M. Kollmanns-berger, U. Resch-Genger, J. Daub, A selective and sensi-
tive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore
and receptor units, J. Am. Chem. Soc. 122 (2000) 968–969.
[36] G. Hennrich, W. Walther, U. Resch-Genger, H. Sonnenschhein, Cu(II)- and
Hg(II)-induced modulation of the fluorescence behavior of a redox-active sen-
sor molecule, Inorg. Chem. 40 (2001) 641–644.
[37] J.D. Winkler, C.M. Bowen, V. Michelet, Photodynamic fluorescent metal ion sen-
sors with parts per billion sensitivity, J. Am. Chem. Soc. 120 (1998) 3237–3242.
[38] S. Djurdjevic, D.A. Leigh, H. McNab, S. Parsons, G. Teobaldi, F. Zerbetto,
Extremely strong and readily accessible AAA–DDD triple hydrogen bond com-
plexes, J. Am. Chem. Soc. 129 (2007) 476–477.
[13] A. Coskun, E.U. Akkaya, Signal ratio amplification via modulation of resonance
energy transfer: proof of principle in an emission ratiometric Hg(II) sensor, J.
Am. Chem. Soc. 128 (2006) 14474–14475.
[14] E.J. Jun, H.N. Won, J.S. Kim, K.-H. Lee, J. Yoon, Unique blue shift due to the
formation of static pyreneexcimer: highly selective fluorescent chemosensor
for Cu2+, Tetrahedron Lett. 47 (2006) 4577–4580.
[15] R. Guliyev, A. Coskun, E.U. Akkaya, Design strategies for ratiometric chemosen-
sors: modulation of excitation energy transfer at the energy donor site, J. Am.
Chem. Soc. 131 (2009) 9007–9013.
[16] A. Coskun, D. Yilmaz, E.U. Akkaya, Bis(2-pyridyl)-substituted boratriazain-
dacene as an NIR-emitting chemosensor for Hg(II), Org. Lett. 9 (2007) 607–609.
[17] M. Zhu, M. Yuan, X. Liu, J. Xu, J. Lv, C. Huang, H. Liu, Y. Li, S. Wang, D. Zhu, Visible
near-infrared chemosensor for mercury ion, Org. Lett. 10 (2008) 1481–1484.
[18] A.B. Descalzo, R. Martinez-Manez, R. Radeglia, K. Rurack, J. Soto, Coupling selec-
tivity with sensitivity in an integrated chemosensor framework: design of a
Hg2+-responsive probe, operating above 500 nm, J. Am. Chem. Soc. 125 (2003)
3418–3419.
[39] J.R. Quinn, S.C. Zimmerman, J.E. Del Bene, I. Shavitt, Does the A·T or G·C base-
pair possess enhanced stability? quantifying the effects of CH· · ·O interactions
and secondary interactions on base-pair stability using a phenomenological
analysis and ab initio calculations, J. Am. Chem. Soc. 129 (2007) 934–941.
[40] S.C. Cristian, M.T. Lisa, R.G. Jose, O. Xiang, R.D. Kim, Homologous series of redox-
active, dinuclear cations [M2(O2CCH3)2(pynp)2]2+ (M = Mo, Ru, Rh) with the
bridging ligand 2-(2-Pyridyl)-1,8-naphthyridine (pynp), Inorg. Chem. 41 (2002)
1523–1533.
[41] Z. Li, M. Yu, L. Zhang, M. Yu, J. Liu, L. Wei, H. Zhang, Chem. Commun. (2010)
(advance article).
[42] J.-H. Huang, W.-H. Wen, Y.-Y. Sun, P.-T. Chou, J.-M. Fang, Two-stage sensing
property via a conjugated donor–acceptor–donor constitution: application to
the visual detection of mercuric ion, J. Org. Chem. 70 (2005) 5827–5832.
[43] C. De, T.A. Samuels, T.L. Haywood, G.A. Anderson, K. Campbell, K. Fletcher, D.H.
Murray, S.O. Obare, Dual colorimetric and electrochemical sensing of organ-
othiophosphorus pesticides by an azastilbene derivative, Tetrahedron Lett. 51
(2010) 1754–1757.
[19] M.G. Choi, D.H. Ryu, H.L. Joen, S. Cha, J. Cho, H.H. Joo, K.S. Hong, C. Lee, S.
Ahn, S.-K. Chang, Chemodosimetric Hg2+-selective signaling by mercuration
of dichlorofluorescein derivatives, Org. Lett. 10 (2008) 3717–3720.
[20] M.C. Aragon, M. Arca, F. Demartin, F.A. Devillanova, F. Isaia, A. Garau, V. Lip-
polis, F. Jalali, U. Papke, M. Shamsipur, L. Tei, A. Yari, G. Verani, Fluorometric
chemosensors. Interaction of toxic heavy metal ions PbII, CdII, and HgII with
novel mixed-donor phenanthroline-containing macrocycles: spectrofluoro-
metric, conductometric, and crystallographic studies, Inorg. Chem. 41 (2002)
6623–6632.
[44] K. Takahashi, T. Okamoto, K. Yamada, H. Iida, A convenient synthesis of sub-
stituted stilbenes by condensation of o- or p-tolunitrile with p-substituted
benzaldehydes1,2, Synthesis 58 (1977).
[45] O.H. Wheeler, H.N.B. de Pabon, Synthesis of stilbenes. A comparative study, J.
Org. Chem. 30 (1965) 1473–1477.
[46] G.R. Newkome, S.J. Garbis, V.K. Mjestic, F.R. Fronceek, Chemistry of heterocyclic
compounds. 61. Synthesis and conformational studies of macrocycles possess-
ing 1,8- or 1,5-naphthyridino subunits connected by carbon-oxygen bridges, J.
Org. Chem. 46 (1981) 833–839.
[21] Y. Shiraishi, S.S.T. Hirai, A coumarin–thiourea conjugate as a fluorescent probe
for Hg(II) in aqueous media with a broad pH range 2–12, Org. Biomol. Chem. 8
(2010) 1310–1314.
[22] Y. Shiraishi, H. Maehara, K. Ishizumi, T. Hirai, Hg(II)-selective excimer emission
of a bisnaphthyl azadiene derivative, Org. Lett. 9 (2007) 3125–3128.
[23] M. Yuan, Y. Li, J. Li, C. Li, X. Liu, J. Lv, J. Xu, H. Liu, S. Wang, D. Zhu, A colorimetric
and fluorometric dual-modal assay for mercury ion by a molecule, Org. Lett. 9
(2007) 2313–2316.
[47] E.V. Brown, 1,8-Naphthyridines. I. Derivatives of 2- and 4-methyl-1,8-
naphthyridines, J. Org. Chem. 30 (1965) 1607–1610.
[48] J. Bourson, J. Pouget, B. Valeur, Ion-responsive fluorescent compounds. 4. Effect
of cation binding on the photophysical properties of a coumarin linked to
monoaza- and diaza-crown ethers, J. Phys. Chem. 97 (1993) 4552–4557.
[49] W. Ling, L. Yuan, X. Cao, W. Tan, Y. Feng, A coumarin-based chromogenic sensor
for transition-metal ions showing ion-dependent bathochromic shift, Eur. J.
Org. Chem. (2008) 4981–4987.
[24] J.H. Soh, K.M.K. Swamy, S.K. Kim, S. Kim, S.-H. Lee, J. Yoon, Rhodamine urea
derivatives as fluorescent chemosensors for Hg2+, Tetrahedron Lett. 48 (2007)
5966–5969.
[50] L. Zhang, R.J. Clark, L. Zhu, A heteroditopic fluoroionophoric platform for con-
structing fluorescent probes with large dynamic ranges for zinc ions, Chem.
Eur. J. 14 (2008) 2894–2903.