Notes and references
1 M. Delferro and T. J. Marks, Chem. Rev., 2011, 111, 2450; H. Dau, C.
Limberg, T. Reier, M. Risch, S. Roggan and P. Strasser, ChemCatChem,
2010, 2, 724; R. M. Haak, S. J. Wezenberg and A. W. Kleij, Chem.
Commun., 2010, 46, 2713; M. J. Wiester, P. A. Ulmann and C. A.
Mirkin, Angew. Chem., Int. Ed., 2010, 50, 114.
2 J. P. Collman, R. Boulatov, C. J. Sunderland and L. Fu, Chem. Rev.,
2004, 104, 561; R. H. Holm, P. Kennepohl and E. I. Solomon, Chem.
Rev., 1996, 96, 2563.
3 Z. Guo and P. J. Sadler, Angew. Chem., Int. Ed., 1999, 38, 1512; T. Storr,
K. H. Thompson and C. Orvig, Chem. Soc. Rev., 2006, 35, 534.
4 T. Glaser, Chem. Commun., 2011, 47, 116; G. Arom´ı and E. K. Brechin,
Struct. Bonding, 2006, 122, 1.
5 A. L. Gavrilova and B. Bosnich, Chem. Rev., 2004, 104, 349.
6 F. Zhang, M. C. Jennings and R. J. Puddephatt, Organometallics, 2004,
23, 1396.
7 S. Brooker and H. L. C. Feltham, Coord. Chem. Rev., 2009, 235, 1458;
P. D. Frischmann and M. J. MacLachlan, Comments Inorg. Chem.,
2008, 29, 26; J. Vela, L. Zhu, C. J. Flaschenriem, W. W. Brennessel,
R. J. Lachicotte and P. L. Holland, Organometallics, 2007, 26, 3416;
P. Comba, T. W. Hambley, P. Hilfenhaus and D. T. Richens, J. Chem.
Soc., Dalton Trans., 1996, 533; P. Comba, A. Fath, T. W. Hambley and
D. T. Richens, Angew. Chem., Int. Ed. Engl., 1995, 34, 1883.
8 G. Morgan, V. McKee and J. Nelson, Inorg. Chem., 1994, 33, 4427; Y.
Shu-Yan, L. Qin-Hui, S. Meng-Chang and H. Xiao-Yun, Inorg. Chem.,
1994, 33, 1251.
Fig. 3 Ball and stick representations of the X-ray crystal structures
of [Pd3Cl6(LImAr)] and [Pd3Cl6(LImR)]. For clarity, disorder components,
solvent of crystallisation, and all hydrogen atoms are omitted.
arrangement in which the Pd1–Pd2–Pd3 angle is 127.4(4)◦ with
Pd(m-Cl)Pd angles of approximately 90◦.
The solid state structure of [Pd3Cl6(LImAr)] is retained in solution.
In the 1H NMR spectrum (Fig. S1, Supplementary information),
only one imine resonance is seen at 8.38 ppm, whereas two distinct
CH3 environments are seen at 3.75 and 2.09 ppm for the central
arene, which reflects the asymmetry of binding to the Pd3Cl6
cluster. Furthermore, free rotation about the N–C bond for the
terminal 2,6-diisopropyl aryl substituent is hindered, as reflected
by the presence of two isopropyl CH resonances at 3.56 and 3.49
ppm and four resonances for the CH3 environments. The 1H NMR
spectrum of [Pd3Cl6(LImR)] is similar (Fig. S2†), indicating that the
solid state structure of this complex is also retained in solution,
but shows only one resonance for the tBu substituent at 1.22 ppm.
Furthermore, the ESI mass spectrum of [Pd3Cl6(LImR)] shows an
ion at m/z 682 for the partially-intact cluster [Pd3Cl5(LImR)]+, and
indicates structural retention in solution.
9 Y.-F. Han, H. Li, L.-H. Weng and G.-X. Jin, Chem. Commun., 2010,
46, 3556; B. J. O’Keefe and P. J. Steel, Organometallics, 1998, 17, 3621.
10 J. B. Love, Chem. Commun., 2009, 3154.
11 A. M. J. Devoille, P. Richardson, N. L. Bill, J. L. Sessler and J. B. Love,
Inorg. Chem., 2011, 50, 3116; P. L. Arnold, E. Hollis, F. J. White, N.
Magnani, R. Caciuffo and J. B. Love, Angew. Chem., Int. Ed., 2011, 50,
887; J. W. Leeland, A. M. Z. Slawin and J. B. Love, Organometallics,
2010, 29, 714; E. Askarizadeh, S. B. Yaghoob, D. M. Boghaei, A. M.
Z. Slawin and J. B. Love, Chem. Commun., 2010, 46, 710; P. L. Arnold,
A.-F. Pe´charman, E. Hollis, A. Yahia, L. Maron, S. Parsons and J. B.
Love, Nat. Chem., 2010, 2, 1056; E. Askarizadeh, A. M. J. Devoille, D.
M. Boghaei, A. M. Z. Slawin and J. B. Love, Inorg. Chem., 2009, 48,
7491; P. L. Arnold, D. Patel, C. Wilson and J. B. Love, Nature, 2008,
451, 315.
12 J. W. Leeland, F. J. White and J. B. Love, J. Am. Chem. Soc., 2011, 133,
7320; J. S. Hart, F. J. White and J. B. Love, Chem. Commun., 2011, 47,
5711; J. W. Leeland, F. J. White and J. B. Love, Chem. Commun., 2011,
47, 4132; P. L. Arnold, N. A. Potter, C. D. Carmichael, A. M. Z. Slawin,
P. Roussel and J. B. Love, Chem. Commun., 2010, 46, 1833.
13 F. Bottomley, P. D. Boyle, S. Karslioglu and R. C. Thompson,
Organometallics, 1993, 12, 4090; F. Bottomley and S. Karslioglu, J.
Chem. Soc., Chem. Commun., 1991, 222; J. Estager, P. Nockemann, K.
R. Seddon, M. Swadz´ba-Kwas´ny and S. Tyrrell, Inorg. Chem., 2011,
50, 5258.
High nuclearity complexes of Pd chloride are rare and the
[Pd3Cl6(L)] complexes can be viewed as short fragments of
polymeric (PdCl2)n. While postulated through indirect evidence,18
only a single example of the crystallographic characterisation of a
PdCl2 trimer end-capped by organic ligands has been described;19
in this example, the unusual Pd3Cl6 motif was stabilised through
the use of a large cone-angled, bowl-shaped triarylphosphine.
Trinuclear PdCl structures are also known for allyl-complexes,
although in these cases one chloride has been substituted by
14 P. M. Cook, L. F. Dahl and D. W. Dickerhoof, J. Am. Chem. Soc., 1972,
94, 5511.
15 B. A. Aufdembrink and R. E. McCarley, J. Am. Chem. Soc., 1986, 108,
2474.
16 N. Leblanc, W. Bi, N. Mercier, P. Auban-Senzier and C. Pasquier, Inorg.
Chem., 2010, 49, 5824; A. Piecha, R. Jakubas, V. Kinzhybalo and T.
Lis, J. Mol. Struct., 2008, 887, 194.
17 R. J. Ellis, J. Chartres, K. C. Sole, T. G. Simmance, C. C. Tong, F. J.
White, M. Schro¨der and P. A. Tasker, Chem. Commun., 2009, 583.
18 P. M. Maitlis, D. Pollock, M. L. Games and W. J. Pryde, Can. J. Chem.,
1965, 43, 470.
19 Y. Ohzu, K. Goto and T. Kawashima, Angew. Chem., Int. Ed., 2003,
42, 5714; Y. Ohzu, K. Goto, H. Sato and T. Kawashima, J. Organomet.
Chem., 2005, 690, 4175.
20 P. M. Bailey, E. A. Kelley and P. M. Maitlis, J. Organomet. Chem., 1978,
144, C52; B. T. Donovan, R. P. Hughes, P. P. Spara and A. L. Rheingold,
Organometallics, 1995, 14, 489; M. Parra-Hake, M. F. Rettig and R.
M. Wing, Organometallics, 1983, 2, 1013.
the allyl ligand.20 The related dianion Pd3Cl8 has also been
2-
characterised structurally as its Bu4N ammonium salt.21 In all of
these previous structures, the Pd3Cl6 motif is linear, in contrast
to the cradle structure seen by us in [Pd3Cl6(L)]. Presumably,
this new bent geometry for the Pd3Cl6 cluster is necessary to
allow a good fit to the wide-span diimine ligands. Furthermore,
it is evident that methyl substitution of the central arene ligand
has ensured that the formation of cyclometallated products is
inhibited.
We thank the University of Edinburgh and the UK EPSRC for
financial support.
21 S. Schwarz, J. Stra¨hle and U. Weisser, Z. Anorg. Allg. Chem., 2002, 628,
2495.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 12025–12027 | 12027
©