656
A. Klein et al. / Polyhedron 31 (2012) 649–656
coordination. Moreover, in the CV of [Cu(pydipH2)2]2+ further
reduction waves (missing for P1) point to partly decomposition
(presumably de-coordination of the O,N,O ligand and replacement
by DMF). Oxidation waves at about 0.6 V are irreversible in all cases
and can be either assigned to further oxidation of copper CuII/CuIII
or more likely to the oxidation of the chloride counter ions or the
chlorido ligands 2Clꢀ/Cl2.
[11] R.J.M. Klein Gebbink, R.T. Jonas, C.R. Goldsmith, T.D.P. Stack, Inorg. Chem. 41
(2002) 4633.
[12] F.M. Al-Sogair, B.P. Operschall, A. Sigel, H. Sigel, J. Schnabl, R.K.O. Sigel, Chem.
Rev. 111 (2011) 4964.
[13] A.A. El-Sherif, M.M. Shoukry, Spectrochim. Acta A66 (2007) 691.
[14] S. Bhattacharya, K. Snehalatha, S.K. George, J. Org. Chem. 63 (1998) 27.
[15] J.D. Crowley, K.D. Hänni, D.A. Leigh, A.M.Z. Slawin, J. Am. Chem. Soc. 132 (2010)
5309.
[16] A.K. Gupta, J. Kim, Acta Crystallogr C59 (2003) m262.
[17] S. Winter, W. Seichter, E. Weber, Z. Anorg. Allg. Chem. 630 (2004) 434.
[18] M. Koman, M. Melník, T. Glowiak, Cryst. Res. Technol. 37 (2002) 119.
[19] T.C. Stamatatos, G.C. Vlahopoulou, C.P. Raptopoulou, A. Terzis, A. Escuer, S.P.
Perlepes, Inorg. Chem. 48 (2009) 4610.
4. Conclusions
[20] G.C. Vlahopoulou, D.I. Alexandropoulos, C.P. Raptopoulou, S.P. Perlepes, A.
Escuer, T.C. Stamatatos, Polyhedron 28 (2009) 3235.
[21] M. Melnik, M. Koman, L. Macaskova, T. Glowiak, R. Grobelny, J. Mrozinsky, J.
Coord. Chem. 43 (1998) 159.
[22] (a) V.T. Yilmaz, S. Guney, O. Andac, W.T.A. Harrison, J. Coord. Chem. 56 (2003)
21;
(b) O. Andac, S. Guney, Y. Topcu, V.T. Yilmaz, W.T.A. Harrison, Acta Crystallogr.
C58 (2002) m17.
[23] (a) M. Melnik, C.E. Holloway, J. Coord. Chem. 49 (1999) 69;
(b) M. Koman, M. Melnik, Polyhedron 16 (1997) 2721.
[24] M. Koman, M. Melnik, J. Moncol, Inorg. Chem. Commun. 3 (2000) 262.
[25] A. Klein, S. Elmas, K. Butsch, Eur. J. Inorg. Chem. (2009) 2271.
[26] A. Klein, K. Butsch, J. Neudörfl, Inorg. Chim. Acta 363 (2010) 3282.
[27] S. Autzen, H.-G. Korth, R. Boese, H. de Groot, R. Sustmann, Eur. J. Inorg. Chem.
(2003) 1401.
[28] J.E. Weder, C.T. Dillon, T.W. Hambley, B.J. Kennedy, P.A. Lay, J.R. Biffin, H.L.
Regtop, N.M. Davies, Coord. Chem. Rev. 232 (2002) 95.
[29] (a) M. Newville, J. Synchrotron. Rad. 8 (2001) 322;
(b) B. Ravel, M. Newville, J. Synchrotron. Rad. 12 (2005) 537.
[30] M. Newville, P. Livins, Y. Yacoby, J.J. Rehr, E.A. Stern, Phys. Rev. B 47 (1993)
14126.
[31] N. Binsted, S.S. Hasnain, J. Synchrotron. Rad. 3 (1996) 185.
[32] (a) S. Winter, W. Seichter, E. Weber, J. Coord. Chem. 57 (2004) 997;
(b) V.T. Yilmaz, S. Hamamci, C. Thöne, Polyhedron 23 (2004) 841.
[33] (a) P. Kapoor, A. Pathak, P. Kaur, P. Venugopalan, R. Kapoor, Trans. Met. Chem.
29 (2004) 251;
(b) P. Kapoor, A. Pathak, R. Kapoor, P. Venugopalan, M. Corbella, M. Rodriguez,
J. Robles, A. Llobet, Inorg. Chem. 41 (2002) 6153.
[34] I.A. Koval, M. Sgobba, M. Huisman, M. Lüken, E. Saint-Aman, P. Gamez, B.
Krebs, J. Reedijk, Inorg. Chim. Acta 359 (2006) 4071.
[35] C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G.
Vlaic, M. Bellatreccia, J. Phys. Chem. B 101 (1997) 344.
The oxido-pincer ligand pydotH2 (2,6-bis(1-hydroxy-1-o-tolyl-
ethyl-g2O,O0)pyridine) forms two different CuII containing com-
plexes when prepared from anhydrous CuCl2. A combination of
EPR spectroscopy and EXAFS allowed to structurally characterise
the light-green dimer of the formula [(pydotH2)CuCl(l-
Cl)2ClCu(pydotH2)] and the penta-coordinate olive-green mono-
mer [(pydotH2)CuCl2]. The molecular entities imply that the ligand
remains protonated upon coordination. When dissolved in DMF
both compounds form
a
monomeric complex [(pyd-
otH2)CuCl2(DMF)] which could be characterised in detail by EPR,
UV–Vis/NIR spectroscopy and electrochemical measurements. All
assignments were supported by comparing CuII complexes of the
related ligands 2,6-bis(hydroxymethyl)pyridine (pydimH2) and
2,6-Bis(1-hydroxy-1-methyl)pyridine (pydipH2). Furthermore,
comparative preparative work using all three ligands has allowed
some insight into the formation reactions of the various species
[(O,N,O)CuCl2]n (n = 1 or 2), [(O,N,O)CuCl2(solv)] or [Cu(O,N,O)2]
[CuCl4] which can be obtained from a 1:1 reaction of the ligands
and CuCl2 by controlling the reaction conditions. Since the pydotH2
ligand is chiral, there might be some implication on specific spec-
troscopic properties as IR-frequencies or catalytic properties. How-
ever, the focus of this work lies exclusively on the structure
elucidation of the two complexes and none of the applied methods
is sensitive to the absolute structure.
[36] (a) L.-S. Kau, D.J. Spira-Solomon, J.E. Penner-Hahn, K.O. Hodgson, E.I. Solomon,
J. Am. Chem. Soc. 109 (1987) 6433;
Acknowledgments
(b) C. Lamberti, G. Spoto, D. Scarano, C. Pazé, M. Salvalaggio, S. Bordiga, A.
Zecchina, G. Turnes Palomino, F. D’Acapito, Chem. Phys. Lett. 269 (1997) 500.
[37] N. Kosugi, H. Kondoh, H. Tajima, H. Kuroda, Chem. Phys. 135 (1989) 149.
[38] J. Prasad, V. Krishna, H.L. Nigam, J. Chem. Soc., Dalton Trans. (1976) 2413.
[39] S.K. Joshi, B.D. Shrivastava, R.C. Kumawat, K.B. Pandeya, Jpn. J. Appl. Phys. 32
(Suppl. 32–2) (1993) 830.
[40] (a) C.K. Bhaskare, S.Y. Kulkarni, Prog. Indian Acad.Sci. Chem. Sci. 97 (1986) 25;
(b) H.L. Nigam, U.C. Srivastava, Chem. Commun. 14 (1971) 761.
[41] T. Glowiak, I. Podgorska, Inorg. Chim. Acta 125 (1986) 83.
[42] (a) W.A. Alves, R.H. de Almeida Santos, A. Paduan-Filho, C.C. Becerra, A.C.
Borin, A.M. Da Costa Ferreira, Inorg. Chim. Acta 357 (2004) 2269;
(b) W.A. Alves, S.A. de Almeida Filho, R.H. de Almeida Santos, A.M. Da Costa
Ferreira, Inorg. Chem. Commun. 6 (2003) 294.
André Uthe and Andreas O. Schüren (University of Cologne)
were acknowledged for EPR measurements. We also would like
to thank the ‘‘Studienstiftung des Deutschen Volkes’’ (KB) for finan-
cial support.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
[43] S. Thakurta, P. Roy, G. Rosair, C.J. Gómez-García, E. Garribba, S. Mitra,
Polyhedron 28 (2009) 695.
[44] K. Skorda, T.C. Stamatatos, A.P. Vafiadis, A.T. Lithoxoidou, A. Terzis, S.P.
Perlepes, J. Mrozinski, C.P. Raptopoulou, J.C. Plakatouras, E.G. Bakalbassis,
Inorg. Chim. Acta 358 (2005) 565.
[45] (a) L.J. Singh, N.S. Devi, S.P. Devi, W.B. Devi, R.K.H. Singh, B. Rajeswari, R.M.
Kadam, Inorg. Chem. Commun. 13 (2010) 365;
(b) P.K. Nanda, M. Bera, A.M. Da Costa Ferreira, A. Paduan-Filho, D. Ray,
Polyhedron 28 (2009) 4065;
(c) S.P. Devi, R.K.H. Singh, R.M. Kadam, Inorg. Chem. 45 (2006) 2193.
[46] (a) S.K. Hoffmann, D. Towle, W.E. Hatfield, P. Chaudhuri, K. Wieghardt, Inorg.
Chem. 24 (1985) 1307;
References
[1] E.I. Solomon, U.M. Sundaram, T.E. Machonkin, Chem. Rev. 96 (1996) 2563.
[2] (a) I. Bertini, G. Cavallaro, K.S. McGreevy, Coord. Chem. Rev. 254 (2010) 506;
(b) A.K. Boal, A.C. Rosenzweig, Chem. Rev. 109 (2009) 4760.
[3] R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96 (1996) 2239.
[4] W. Kaim, J. Rall, Angew. Chem. Int. Ed. Engl. 35 (1996) 43.
[5] B.J. Hathaway, Coord. Chem. Rev. 52 (1983) 87.
[6] V. Chaurin, E.C. Constable, C.E. Housecroft, New J. Chem. 30 (2006) 1740.
[7] W. Kaim, Dalton Trans. (2003) 761.
[8] M.A. Halcrow, Dalton Trans. (2003) 4375.
(b) N.F. Albanese, H.M. Haendler, Polyhedron 2 (1983) 1131.
[47] S.S. Eaton, K.M. More, B.M. Sawant, G.R. Eaton, J. Am. Chem. Soc. 105 (1983)
6560.
[9] (a) N. Wei, N.N. Murthy, K.D. Karlin, Inorg. Chem. 33 (1994) 6093;
(b) G. Kokoszka, K.D. Karlin, F. Padula, J. Baranowski, C. Goldstein, Inorg. Chem.
23 (1984) 4378.
[48] B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143.
[10] D. Reinen, C. Friebel, Inorg. Chem. 23 (1984) 791.