316, 268; (c) R. W. Tilford, R. Gemmil, H.-C. zur Loye and
J. J. Lavigne, Chem. Mater., 2006, 18, 5296.
2 (a) N. B. McKeown and P. M. Budd, Macromolecules, 2010,
43, 5163; (b) J.-X. Xiang and A. I. Cooper, Top. Curr. Chem.,
2010, 293, 1; (c) A. Thomas, Angew. Chem., Int. Ed., 2010,
49, 8328; (d) M. Mastalerz, Angew. Chem., Int. Ed., 2008,
47, 445.
3 (a) S. Kitagawa, R. Kitaura and S.-i. Noro, Angew. Chem., Int. Ed.,
2004, 43, 2334; (b) G. Ferey, Chem. Soc. Rev., 2008, 37, 191.
´
4 Introduction to Zeolite Science and Practice, ed. H. Ceijka,
H. van Bekkum, A. Corma and F. Schuth, Elsevier, Amsterdam,
¨
Netherlands, 3rd edn, 2007.
5 (a) F. J. Uribe-Romo, J. R. Hunt, H. Furukawa, C. Klock,
¨
M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 2009,
131, 4570; (b) M. G. Schwab, B. Fassbender, H. W. Spiess,
A. Thomas, X. Feng and K. Mullen, J. Am. Chem. Soc., 2009,
¨
Fig. 3 Adsorption of H2 at 77 K and P0 = 1 bar (triangles), CO2 (circles)
and methane (squares) at 273 K and P0 = 1 bar of MaSOF-1 (red) and
MaSOF-2 (black).
131, 7216; (c) P. Pandey, A. P. Katsoulidis, I. Eryazici, Y. Wu,
M. G. Kanatzidis and S. T. Nguyen, Chem. Mater., 2010, 22, 4974.
6 (a) P. Kuhn, M. Antonietti and A. Thomas, Angew. Chem., Int. Ed.,
2008, 47, 3450; (b) P. Kuhn, A. Forget, D. Su, A. Thomas and
M. Antonietti, J. Am. Chem. Soc., 2008, 130, 13333; (c) P. Kuhn,
A. Thomas and M. Antonietti, Macromolecules, 2009, 42, 4426;
(d) H. Ren, T. Ben, E. S. Wang, X. F. Jing, M. Xue, B. B. Liu,
Y. Cui, S. L. Qiu and G. S. Zhu, Chem. Commun., 2009, 291.
7 (a) J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell,
H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z.
Khimyak and A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574;
(b) J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A.
Jones, Y. Z. Khimyak and A. I. Cooper, J. Am. Chem. Soc., 2008,
130, 7710; (c) R. Dawson, A. Laybourn, R. Clowes, Y. Z.
Khimyak, D. J. Adams and A. I. Cooper, Macromolecules, 2009,
42, 8809.
8 (a) T. Ben, H. Rao, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang,
J. Xu, F. Deng, J. M. Simmons, S. Qui and G. Zhu, Angew. Chem.,
Int. Ed., 2009, 48, 9457; (b) J. Schmidt, M. Werner and A. Thomas,
Macromolecules, 2009, 42, 4426.
9 N. B. McKeown, B. Gahnem, K. J. Msayib, P. M. Budd, C. E.
Tattershall, K. Mahmood, S. Tan, D. Book, H. W. Langmi and
A. Walton, Angew. Chem., Int. Ed., 2006, 45, 1804.
interact with the metal centers. MaSOF-1, with nickel ions, adsorbs
at 77 K and 1 bar 4.46 mmol gÀ1 H2 and 3.49 mmol gÀ1 at 87 K,
which is equal to 0.90 wt% and 0.70 wt%, respectively (Fig. 3). The
heat of adsorption via the Clausius–Clapeyron equation is esti-
mated to be À6.8 kJ molÀ1 22
.
MaSOF-2 with zinc ions adsorbs
similar amounts under the same conditions (1 bar, 77 K:
4.14 mmol gÀ1, 0.84 wt%; at 87 K: 3.27 mmol gÀ1, 0.66 wt%).
Here, the calculated heat of adsorption is À7.8 kJ molÀ1
,
about 1 kJ molÀ1 lower than for MaSOF-1. This suggests that
the nature of the metal ion influences the adsorption proper-
ties. It is worth mentioning that the heat of adsorption for
both materials decreases with increasing surface coverage
(see Fig. S25 in the ESIw), which, again, can be seen as a hint
that first the metal interacts with the adsorbent. Methane is
adsorbed at 273 K and 1 bar by both MaSCOFs in lower
amounts: 0.43 mmol gÀ1 (0.69 wt%) for MaSOF-1 and
0.61 mmol gÀ1 (0.98 wt%) for MaSOF-2. For the adsorption
of CO2 at 273 K and 1 bar, a bigger difference can be detected:
MaSOF-1 adsorbs 1.83 mmol gÀ1 (8.1 wt%), whereas MaSOF-2
takes up more CO2 (2.23 mmol gÀ1, 9.8 wt%). This is a hint that
the more Lewis acidic zinc centers stronger interact with CO2
than the weaker Lewis acidic nickel centers.22,23
10 P. Pandey, O. K. Farha, A. M. Spokoyny, C. A. Mirkin, M. G.
Kanatzidis, J. T. Hupp and S. T. Nguyen, J. Mater. Chem., 2011,
21, 1700.
11 B. Li, R. Gong, W. Wang, X. Huang, W. Zhang, H. Li, C. Hu and
B. Tan, Macromolecules, 2011, 44, dx.doi.org/10.1021/ma200630s.
12 (a) R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas and
F. Schuth, Angew. Chem., Int. Ed., 2009, 48, 6913; (b) P. M.
¨
Budd, B. Ghanem, K. Msayib, N. B. McKeown and C. Tattershall,
J. Mater. Chem., 2003, 13, 2721; (c) L. Ma, M. Wanderley and
W. Lin, ACS Catal., 2011, 1, 691.
In conclusion, we described a one-pot three component reaction
of metal salphen containing porous organic polymers, with high
BET surface areas, narrow pore-size distribution and selective gas
adsorption properties. To the best of our knowledge, this is
the first three-component synthesis of a metal-functionalized
porous organic framework. Several MaSOFs, with a broad
variety of incorporated metal ions, will be synthesized to study
the influence of charged, free metal sites in similar porous
networks.24 Furthermore, homochiral MaSOFs will be synthe-
sized, to combine the extraordinary catalytic properties of metal
salens18 with porous materials in heterogeneous catalysis.15,25
The authors like to thank the ‘‘Deutsche Forschungsge-
meinschaft’’ and the ‘‘Fond der Chemischen Industrie’’ for finan-
cial support. M. M. likes to thank C. Egger for nitrogen sorption,
S. Blessing for PXRD, and G. Weber (all Ulm University) for
TGA measurements.
13 L. Chen, Y. Yang and D. Jiang, J. Am. Chem. Soc., 2010,
132, 9138.
14 For a recent example, see: K. Gedrich, I. Senkovska, N. Klein,
U. Stoeck, A. Henschel, M. R. Lohe, I. A. Baburin, U. Mueller
and S. Kaskel, Angew. Chem., Int. Ed., 2010, 49, 8489.
15 P. Kaur, J. T. Hupp and S. T. Nguyen, ACS Catal., 2011, 1, 819.
16 N. B. McKeown, S. Makhseed and P. M. Budd, Chem. Commun.,
2002, 2780.
17 H. J. Mackintosh, P. M. Budd and N. B. McKeown, J. Mater.
Chem., 2008, 18, 573.
18 P. G. Cozzi, Chem. Soc. Rev., 2004, 33, 410.
19 C. Wang, M. Zheng and W. Lin, J. Phys. Chem. Lett., 2011,
2, 1701.
20 M. Mastalerz and I. M. Oppel, Eur. J. Org. Chem., 2011, 5971.
21 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou,
R. A. Pierotti, J. Rouquerol and T. Siemieniewska, Pure Appl.
Chem., 1985, 57, 603.
22 B. Panella, M. Hirscher, H. Putter and U. Muller, Adv. Funct.
¨
¨
Mater., 2006, 16, 520.
23 M. M. Belmonte, S. J. Wezenberg, R. M. Haak, D. Anselmo,
E. C. Escudero-Adan, J. Benet-Buchholz and A. W. Kleij, Dalton
Trans., 2010, 39, 4541.
´
Notes and references
1 (a) A. P. Cote
Matzger and O. M. Yaghi, Science, 2005, 310, 1166; (b) H. M.
El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote
´
, A. I. Benin, N. W. Ockig, M. O’Keeffe, A. J.
24 B. Schmitz, U. Muller, N. Trukhan, M. Schubert, G. Fe
´
rey and
¨
M. Hirscher, ChemPhysChem, 2008, 9, 2181.
´
´
,
25 A. Zulauf, M. Mellah, X. Hong and E. Schulz, Dalton Trans.,
2010, 39, 6911.
R. E. Taylor, M. O’Keeffe and O. M. Yaghi, Science, 2007,
c
132 Chem. Commun., 2012, 48, 130–132
This journal is The Royal Society of Chemistry 2012